Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Neurobiol Dis ; 201: 106695, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39370051

ABSTRACT

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation. METHODS: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action. RESULTS: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1ß levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1ß and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1ß and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1ß and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments. CONCLUSIONS: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1ß and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment.

2.
Int J Biol Sci ; 20(10): 3842-3862, 2024.
Article in English | MEDLINE | ID: mdl-39113700

ABSTRACT

Intracerebral hemorrhage (ICH) is a severe stroke subtype with limited therapeutic options. Programmed cell death (PCD) is crucial for immunological balance, and includes necroptosis, pyroptosis, apoptosis, ferroptosis, and necrosis. However, the distinctions between these programmed cell death modalities after ICH remain to be further investigated. We used single-cell transcriptome (single-cell RNA sequencing) and spatial transcriptome (spatial RNA sequencing) techniques to investigate PCD-related gene expression trends in the rat brain following hemorrhagic stroke. Ferroptosis was the main PCD process after ICH, and primarily affected mature oligodendrocytes. Its onset occurred as early as 1 hour post-ICH, peaking at 24 hours post-ICH. Additionally, ferroptosis-related genes were distributed in the hippocampus and choroid plexus. We also elucidated a specific interaction between lipocalin-2 (LCN2)-positive microglia and oligodendrocytes that was mediated by the colony stimulating factor 1 (CSF1)/CSF1 receptor pathway, leading to ferroptosis induction in oligodendrocytes and subsequent neurological deficits. In conclusion, our study highlights ferroptosis as the primary PCD mechanism, emerging as early as 1 hour post-ICH. Early therapeutic intervention via the suppression of microglial LCN2 expression may alleviate ferroptosis-induced damage in oligodendrocytes and associated neurological deficits, thus offering a promising neuroprotective strategy following ICH.


Subject(s)
Ferroptosis , Oligodendroglia , Transcriptome , Animals , Ferroptosis/genetics , Oligodendroglia/metabolism , Rats , Male , White Matter/metabolism , White Matter/pathology , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/genetics , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/genetics , Apoptosis/genetics , Single-Cell Analysis
3.
MedComm (2020) ; 5(7): e635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988493

ABSTRACT

Intracerebral hemorrhage (ICH) poses a formidable challenge in stroke management, with limited therapeutic options, particularly in the realm of immune-targeted interventions. Clinical trials targeting immune responses post-ICH have encountered setbacks, potentially attributable to the substantial cellular heterogeneity and intricate intercellular networks within the brain. Here, we present a pioneering investigation utilizing single-cell RNA sequencing and spatial transcriptome profiling at hyperacute (1 h), acute (24 h), and subacute (7 days) intervals post-ICH, aimed at unraveling the dynamic immunological landscape and spatial distributions within the cerebral tissue. Our comprehensive analysis revealed distinct cell differentiation patterns among myeloid and lymphocyte populations, along with delineated spatial distributions across various brain regions. Notably, we identified a subset of lymphocytes characterized by the expression of Spp1 and Lyz2, termed macrophage-associated lymphocytes, which exhibited close interactions with myeloid cells. Specifically, we observed prominent interactions between Lgmn+Macro-T cells and microglia through the spp1-cd44 pathway during the acute phase post-ICH in the choroid plexus. These findings represent a significant advancement in our understanding of immune cell dynamics at single-cell resolution across distinct post-ICH time points, thereby laying the groundwork for exploring critical temporal windows and informing the development of targeted therapeutic strategies.

4.
BMC Plant Biol ; 24(1): 326, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658809

ABSTRACT

BACKGROUND: Salt stress severely inhibits plant growth, and the WRKY family transcription factors play important roles in salt stress resistance. In this study, we aimed to characterize the role of tobacco (Nicotiana tabacum) NtWRKY65 transcription factor gene in salinity tolerance. RESULTS: This study characterized the role of tobacco (Nicotiana tabacum) NtWRKY65 transcription factor gene in salinity tolerance using four NtWRKY65 overexpression lines. NtWRKY65 is localized to the nucleus, has transactivation activity, and is upregulated by NaCl treatment. Salinity treatment resulted in the overexpressing transgenic tobacco lines generating significantly longer roots, with larger leaf area, higher fresh weight, and greater chlorophyll content than those of wild type (WT) plants. Moreover, the overexpressing lines showed elevated antioxidant enzyme activity, reduced malondialdehyde content, and leaf electrolyte leakage. In addition, the Na+ content significantly decreased, and the K+/Na+ ratio was increased in the NtWRKY65 overexpression lines compared to those in the WT. These results suggest that NtWRKY65 overexpression enhances salinity tolerance in transgenic plants. RNA-Seq analysis of the NtWRKY65 overexpressing and WT plants revealed that NtWRKY65 might regulate the expression of genes involved in the salt stress response, including cell wall component metabolism, osmotic stress response, cellular oxidant detoxification, protein phosphorylation, and the auxin signaling pathway. These results were consistent with the morphological and physiological data. These findings indicate that NtWRKY65 overexpression confers enhanced salinity tolerance. CONCLUSIONS: Our results indicated that NtWRKY65 is a critical regulator of salinity tolerance in tobacco plants.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Transcription Factors , Nicotiana/genetics , Nicotiana/physiology , Salt Tolerance/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Front Genet ; 15: 1293477, 2024.
Article in English | MEDLINE | ID: mdl-38482383

ABSTRACT

Studying how populations in various environments differ genetically is crucial for gaining insights into the evolution of biodiversity. In order to pinpoint potential indicators of divergence and adaptation to diverse environments, we conducted a comprehensive analysis of 3,491,868 single nucleotide polymorphisms (SNPs) derived from five populations of Brachymystax lenok. We discovered significant geographic divergence among these 5 populations, which lack evidence of gene flow among them. Our results further demonstrated that the current distribution pattern of Brachymystax lenok are driven by geographical isolation and changes in oceans and rivers. We also performed genome-wide scan and identified the genes evolved to adapt the different environments, including stress response. In general, these results provide genomic support for high-level genetic divergence and the genetic basis of adaptation to different environments.

6.
BMC Genomics ; 25(1): 320, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549066

ABSTRACT

BACKGROUND: Stigma exsertion is an essential agricultural trait that can promote cross-pollination to improve hybrid seed production efficiency. However, the molecular mechanism controlling stigma exsertion remains unknown. RESULTS: In this study, the Nicotiana tabacum cv. K326 and its two homonuclear-heteroplasmic lines, MSK326 (male-sterile) and MSK326SE (male-sterile and stigma exserted), were used to investigate the mechanism of tobacco stigma exsertion. A comparison of the flowers between the three lines showed that the stigma exsertion of MSK326SE was mainly due to corolla shortening. Therefore, the corollas of the three lines were sampled and presented for RNA-seq analysis, which found 338 candidate genes that may cause corolla shortening. These genes were equally expressed in K326 and MSK326, but differentially expressed in MSK326SE. Among these 338 genes, 15 were involved in hormone synthesis or signal transduction pathways. Consistently, the content of auxin, dihydrozeatin, gibberellin, and jasmonic acid was significantly decreased in the MSK326SE corolla, whereas abscisic acid levels were significantly increased. Additionally, seven genes involved in cell division, cell cycle, or cell expansion were identified. Protein-protein interaction network analysis identified 45 nodes and 79 protein interactions, and the largest module contained 20 nodes and 52 protein interactions, mainly involved in the hormone signal transduction and pathogen defensive pathways. Furthermore, a putative hub gene coding a serine/threonine-protein kinase was identified for the network. CONCLUSIONS: Our results suggest that hormones may play a key role in regulating tobacco stigma exsertion induced by corolla shortening.


Subject(s)
Nicotiana , Transcriptome , Nicotiana/genetics , Disclosure , Indoleacetic Acids/metabolism , Hormones/metabolism , Flowers/metabolism
7.
J Hazard Mater ; 465: 133462, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38215520

ABSTRACT

The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.


Subject(s)
Abscisic Acid , Cadmium , Reactive Oxygen Species/metabolism , Cadmium/metabolism , Plant Proteins/genetics , Signal Transduction , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
8.
FASEB J ; 38(1): e23394, 2024 01.
Article in English | MEDLINE | ID: mdl-38149910

ABSTRACT

Neutrophils and their production of neutrophil extracellular traps (NETs) significantly contribute to neuroinflammation and brain damage after intracerebral hemorrhage (ICH). Although Akebia saponin D (ASD) demonstrates strong anti-inflammatory activities and blood-brain barrier permeability, its role in regulating NETs formation and neuroinflammation following ICH is uncharted. Our research focused on unraveling the influence of ASD on neuroinflammation mediated by NETs and the mechanisms involved. We found that increased levels of peripheral blood neutrophils post-ICH are correlated with worse prognostic outcomes. Through network pharmacology, we identified ASD as a promising therapeutic target for ICH. ASD administration significantly improved neurobehavioral performance and decreased NETs production in neutrophils. Furthermore, ASD was shown to upregulate the membrane protein NTSR1 and activate the cAMP signaling pathway, confirmed through transcriptome sequencing, western blot, and immunofluorescence. Interestingly, the NTSR1 inhibitor SR48692 significantly nullified ASD's anti-NETs effects and dampened cAMP pathway activation. Mechanistically, suppression of PKAc via H89 negated ASD's anti-NETs effects but did not affect NTSR1. Our study suggests that ASD may reduce NETs formation and neuroinflammation, potentially involving the NTSR1/PKAc/PAD4 pathway post-ICH, underlining the potential of ASD in mitigating neuroinflammation through its anti-NETs properties.


Subject(s)
Cerebral Hemorrhage , Extracellular Traps , Neuroinflammatory Diseases , Saponins , Network Pharmacology , Gene Expression Profiling , Saponins/pharmacology , Extracellular Traps/drug effects , Neuroinflammatory Diseases/drug therapy , Cerebral Hemorrhage/drug therapy , Humans , Animals , Rats , Rats, Sprague-Dawley , Signal Transduction , Receptors, Neurotensin/metabolism , Protein-Arginine Deiminase Type 4/metabolism
9.
BMC Infect Dis ; 23(1): 742, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904093

ABSTRACT

BACKGROUND: Hydrocephalus is a frequent complication of tuberculous meningitis (TBM), and ventriculoperitoneal shunt (VPS) has been shown to improve short-term prognosis for patients with TBM-associated hydrocephalus. However, questions remain about long-term prognosis and shunt-related complications. This study aims to provide a comprehensive assessment of both long-term prognosis and shunt-related complications in patients with TBM-induced hydrocephalus who have undergone VPS treatment. METHODS: This retrospective study analyzed the clinical data of TBM patients with hydrocephalus treated with VPS at Peking Union Medical College Hospital between December 1999 and February 2023. Both short-term outcomes at discharge and long-term outcomes during follow-up were examined. Prognosis and shunt-related complications were assessed using the modified Rankin Scale (mRS) and the Activity of Daily Living (ADL) score to evaluate neurological function and autonomic living ability, respectively. RESULTS: A total of 14 patients with TBM-associated hydrocephalus were included in this study. Of these, 92.9% (13/14) exhibited favorable short-term outcomes, while 57.1% (8/14) showed positive long-term outcomes. Initial results indicated 6 complete recoveries (CR), 7 partial recoveries (PR), and 1 treatment failure. No catheter-related complications were observed initially. Long-term results included 4 CRs, 4 PRs, and 6 treatment failures. A variety of shunt surgery-related complications were noted, including three instances of catheter obstruction, one of incision infection, one of catheter-related infection, one of acute cerebral infarction, and one of transient peritoneal irritation accompanied by diarrhea. CONCLUSIONS: VPS appears to be an effective and well-tolerated treatment for TBM-associated hydrocephalus, efficiently alleviating acute intracranial hypertension. Nonetheless, continuous long-term monitoring and proactive management are essential to mitigate the risk of catheter-related complications.


Subject(s)
Hydrocephalus , Tuberculosis, Meningeal , Humans , Ventriculoperitoneal Shunt/adverse effects , Retrospective Studies , Tuberculosis, Meningeal/complications , Tuberculosis, Meningeal/surgery , Hydrocephalus/etiology , Hydrocephalus/surgery , Prognosis , Treatment Outcome
10.
J Nanobiotechnology ; 21(1): 396, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37904204

ABSTRACT

BACKGROUND: This systematic review and meta-analysis aimed to evaluate the efficacy of engineered extracellular vesicles (EEVs) in the treatment of ischemic stroke (IS) in preclinical studies and to compare them with natural extracellular vesicles (EVs). The systematic review provides an up-to-date overview of the current state of the literature on the use of EEVs for IS and informs future research in this area. METHODS: We searched PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus databases for peer-reviewed preclinical studies on the therapeutic effect of EEVs on IS.Databases ranged from the inception to August 1, 2023. The outcome measures included infarct volumes, neurological scores, behavioral scores, apoptosis rates, numbers of neurons, and levels of IL-1ß, IL-6, and TNF-α. The CAMARADES checklist was used to assess the quality and bias risks of the studies. All statistical analyses were performed using RevMan 5.4 software. RESULTS: A total of 28 studies involving 1760 animals met the inclusion criteria. The results of the meta-analysis showed that compared to natural EVs, EEVs reduced infarct volume (percentage: SMD = -2.33, 95% CI: -2.92, -1.73; size: SMD = -2.36, 95% CI: -4.09, -0.63), improved neurological scores (mNSS: SMD = -1.78, 95% CI: -2.39, -1.17; Zea Longa: SMD = -2.75, 95% CI: -3.79, -1.71), promoted behavioral recovery (rotarod test: SMD = 2.50, 95% CI: 1.81, 3.18; grid-walking test: SMD = -3.45, 95% CI: -5.15, -1.75; adhesive removal test: SMD = -2.60, 95% CI: -4.27, -0.93; morris water maze test: SMD = -3.91, 95% CI: -7.03, -0.79), and reduced the release of proinflammatory factors (IL-1ß: SMD = -2.02, 95% CI: -2.77, -1.27; IL-6: SMD = -3.01, 95% CI: -4.47, -1.55; TNF-α: SMD = -2.72, 95% CI: -4.30, -1.13), increasing the number of neurons (apoptosis rate: SMD = -2.24, 95% CI: -3.32, -1.16; the number of neurons: SMD = 3.70, 95% CI: 2.44, 4.96). The funnel plots for the two main outcome measures were asymmetric, indicating publication bias. The median score on the CAMARADES checklist was 7 points (IQR: 6-9). CONCLUSIONS: This meta-analysis shows that EEVs are superior to natural EVs for the treatment of IS. However, research in this field is still at an early stage, and more research is needed to fully understand the potential therapeutic mechanism of EEVs and their potential use in the treatment of IS. PROSPERO REGISTRATION NUMBER: CRD42022368744.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , Animals , Ischemic Stroke/therapy , Interleukin-6 , Tumor Necrosis Factor-alpha , Infarction
11.
Eur J Radiol ; 167: 111081, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37716178

ABSTRACT

PURPOSE: The prognosis following a hemorrhagic stroke is usually extremely poor. Rating scales have been developed to predict the outcomes of patients with intracerebral hemorrhage (ICH). To date, however, the prognostic prediction models have not included the full range of relevant imaging features. We constructed a clinic-imaging fusion model based on convolutional neural networks (CNN) to predict the short-term prognosis of ICH patients. MATERIALS AND METHODS: This was a multi-center retrospective study, which included 1990 patients with ICH. Two CNN-based deep learning models were constructed to predict the neurofunctional outcomes at discharge; these were validated using a nested 5-fold cross-validation approach. The models' predictive efficiency was compared with the original ICH scale and the ICH grading scale. Poor neurological outcome was defined as a Glasgow Outcome Scale (GOS) score of 1-3. RESULTS: The training and test sets included 1599 and 391 patients, respectively. For the test set, the clinic-imaging fusion model had the highest area under the curve (AUC = 0.903), followed by the imaging-based model (AUC = 0.886), the ICH scale (AUC = 0.777), and finally the ICH grading scale (AUC = 0.747). CONCLUSION: The CNN prognostic prediction model based on neuroimaging features was more effective than the ICH scales in predicting the neurological outcomes of ICH patients at discharge. The CNN model's predictive efficiency slightly improved when clinical data were included.


Subject(s)
Hemorrhagic Stroke , Humans , Artificial Intelligence , Prognosis , Retrospective Studies , Cerebral Hemorrhage/diagnostic imaging
12.
Ecotoxicol Environ Saf ; 263: 115361, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37597289

ABSTRACT

Cadmium (Cd) removal from soil to reduce Cd accumulation in plants is essential for agroecology, food safety, and human health. Cd enters plants from soil and affects plant growth and development. Hydrogels can easily combine with Cd, thereby altering its bioavailability in soil. However, few studies have evaluated the effects of hydrogel on the complex phytotoxicity caused by Cd uptake in plants and the microbial community structure. Herein, a new poly (acrylic acid)-grafted starch and potassium humate composite (S/K/AA) hydrogel was added to soil to evaluate its impact on tobacco growth and the soil microenvironment. The results indicate that the addition of S/K/AA hydrogel can significantly improve the biomass, chlorophyll (Chl) content, and photosynthetic capacity of tobacco plants during Cd stress conditions, and decrease Cd concentration, probably by affecting Cd absorption through the expression of Cd absorption transporters (e.g., NRAMP5, NRAMP3, and IRT1). Moreover, the application of S/K/AA hydrogel not only reduced the accumulation of reactive oxygen species (ROS), but also reduced the antioxidant activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), suggesting that S/K/AA hydrogel alleviates Cd toxicity via a non-antioxidant pathway. Notably, we further analyzed the effectiveness of the hydrogel on microbial communities in Cd-contaminated soil and found that it increased the Cd-tolerant microbial community (Arthrobacter, Massilia, Streptomyces), enhancing the remediation ability of Cd-contaminated soil and helping tobacco plants to alleviate Cd toxicity. Overall, our study provides primary insights into how S/K/AA hydrogel affects Cd bioavailability and alleviates Cd toxicity in plants.


Subject(s)
Arthrobacter , Cadmium , Humans , Cadmium/toxicity , Biological Availability , Nicotiana , Hydrogels
13.
Comput Med Imaging Graph ; 108: 102284, 2023 09.
Article in English | MEDLINE | ID: mdl-37567044

ABSTRACT

The measurement of mid-surface shift (MSS), the geometric displacement between the actual mid-surface and the ideal midsagittal plane (iMSP), is of great significance for accurate diagnosis, treatment and prognosis of patients with intracranial hemorrhage (ICH). Most previous studies are subject to inherent inaccuracy on account of calculating midline shift (MLS) based on 2D slices and ignoring pathological conditions. In this study, we propose a novel standardized measurement model to quantify the distance and the overall volume of mid-surface shift (MSS-D, MSS-V). Our work has four highlights. First, we develop an end-to-end network architecture with multiple sub-tasks including the actual mid-surface segmentation, hematoma segmentation and iMSP detection, which significantly improves the efficiency and accuracy of MSS measurement by taking advantage of the common properties among tasks. Second, an efficient iMSP detection scheme is proposed based on the differentiable deep Hough transform (DHT), which converts and simplifies the plane detection problem in the image space into a keypoint detection problem in the Hough space. Third, we devise a sparse DHT strategy and a weighted least square (WLS) method to increase the sparsity of features, improving inference speed and greatly reducing computation cost. Fourth, we design a joint loss function to comprehensively consider the correlation of features between multi-tasks and multi-domains. Extensive validation on our large in-house dataset (519 patients) and the public CQ500 dataset (491 patients), demonstrates the superiority of our method over the state-of-the-art methods.


Subject(s)
Brain , Tomography, X-Ray Computed , Humans , Brain/diagnostic imaging , Brain/pathology , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods
15.
Plant Physiol Biochem ; 201: 107901, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37494824

ABSTRACT

Heat stress considerably restricts the geographical distribution of crops and affects their growth, development, and productivity. HSP70 plays a critical regulatory role in plant growth response to heat stress. However, the mechanisms of this regulatory remain poorly understood. Here, an HSP70 gene, NtHSP70-8b, which is involved in the heat stress response of tobacco, was cloned and identified. The expression of NtHSP70-8b was induced by exogenous abscisic acid (ABA) treatment and abiotic stress, including heat, drought, and salt. Notably, high NtHSP70-8b expression occurred under heat stress conditions, which was consistent with the ß-glucuronidase histochemical analysis. Moreover, NtHSP70-8b overexpression markedly enhanced heat stress tolerance by changing the stomatal conductance and antioxidant capacity in tobacco leaves. qRT-PCR showed that the expression levels of ABA synthesis and response genes (NtNCED3 and NtAREB), stress defence genes (NtERD10C and NtLEA5), and other HSP genes (NtHSP90 and NtHSP26a) in NtHSP70-8b-overexpressing tobacco were high under heat stress. The interaction of NtHSP70-8b with NtHSP26a was further confirmed by a luciferase complementation imaging assay. In contrast, NtHSP70-8b knockout mutants showed significantly reduced antioxidant capacity compared to the wild type (WT) under heat stress conditions, suggesting that NtHSP70-8b acts as a positive regulator of heat stress in tobacco. Moreover, NtHSP70-8b overexpression increased the 1000-seed weight. Taken together, NtHSP70-8b is involved in the heat stress response, and NtHSP70-8b overexpression contributed to enhanced tolerance to heat stress, which is thus an essential gene with potential application value for developing heat stress-tolerant crops.


Subject(s)
Nicotiana , Thermotolerance , Nicotiana/metabolism , Thermotolerance/genetics , Antioxidants/metabolism , HSP70 Heat-Shock Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism
16.
J Environ Manage ; 341: 118026, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37192593

ABSTRACT

With the intensification of human disturbance in urban lakes, the loss of eukaryotic biodiversity (macroinvertebrates, etc.) reduces the accuracy of the index of biotic integrity (IBI) assessment. Therefore, how to accurately evaluate the ecological status of urban lakes based on IBI has become an important issue. In this study, 17 sampling sites from four lakes in Wuhan City, China were selected to analyze the composition and diversity characteristics of benthic and microbial communities and their relationship with environmental factors based on eDNA high-throughput sequencing, and compare the application effects of the benthic index of biotic integrity (B-IBI) and the microbial index of biotic integrity (M-IBI). Canonical correspondence analysis showed that the key environmental factors affecting benthic family/genus composition were temperature, conductivity, total phosphorus (TP), and total nitrogen (TN). Redundancy analysis showed that pH, TP, conductivity, and ammonia nitrogen had the greatest impact on microbial phyla/genera. After screening, four and six core metrics were determined from candidate parameters to establish B-IBI and M-IBI. The B-IBI evaluation results showed that healthy, sub-heathy, and poor accounted for 58.8%, 35.3%, and 5.9%, respectively, in the sites. The results of the M-IBI evaluation showed that 29.4% of the sites were healthy, 47.1% were sub-healthy, and 23.5% were common. M-IBI was positively correlated with water quality (r = 0.74, P < 0.001), whereas B-IBI was not. Further results showed that M-IBI was negatively correlated with the relative abundance of bloom-forming cyanobacteria Planktothrix (r = -0.54, P < 0.05). Therefore, M-IBI is more sensitive than B-IBI and can better reflect the actual water pollution status. This study can provide a new perspective for ecological assessment and management of urban lakes strongly disturbed by human activities.


Subject(s)
DNA, Environmental , Microbiota , Humans , Environmental Monitoring/methods , Ecosystem , Lakes , Rivers , China , Nitrogen/analysis
17.
J Environ Manage ; 335: 117552, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36848811

ABSTRACT

Wastewater usually contains high concentration of calcium (Ca), posing a competitive reaction with magnesium (Mg) on phosphorus (P) recovery during the struvite crystallization. The differences in the adsorption of heavy metals by Ca-P and Mg-P (struvite) generated are still unclear. Herein, we analyzed the residues of four kinds of common heavy metals (Cu, Zn, Cd, Pb) in Ca-P and Mg-P (struvite) under varying conditions (solution pH, N/P ratio, Mg/Ca ratio) in the swine wastewater and explored their possible competitive adsorption mechanisms. The experiments using synthetic wastewater and real wastewater have similar experimental patterns. However, under the same conditions, the metal (Pb) content of struvite recovered from the synthetic wastewater (16.58 mg/g) was higher than that of the real wastewater (11.02 mg/g), as predicted by the Box-Behnken Design of Response Surface Methodology (BBD-RSM). The results demonstrated that Cu was the least abundant in the precipitates compared to Zn, Cd, and Pb of almost all experimental groups with an N/P ratio greater than or equal to 10. The fact might be mainly attributed to the its stronger binding capacity of Cu ion with NH3 and other ligands. Compared with struvite, the Ca-P product had a higher adsorption capacity for heavy metals and a lower P recovery rate. In addition, the higher solution pH and N/P ratio were favorable to obtain qualified struvite with lower heavy metal content. It can be applied to reduce the incorporation of heavy metals by modulating pH and N/P ratio through RSM, which is suitable for different Mg/Ca ratios. It is anticipated that the results obtained would offer support for the safe utility of struvite from wastewater containing Ca and heavy metals.


Subject(s)
Metals, Heavy , Wastewater , Animals , Swine , Struvite , Magnesium , Calcium , Cadmium , Crystallization , Adsorption , Lead , Metals, Heavy/analysis , Phosphates/chemistry
18.
World Neurosurg ; 170: e364-e370, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36371044

ABSTRACT

OBJECTIVE: Differentiating idiopathic normal pressure hydrocephalus (iNPH) from other neurodegenerative diseases is challenging. Only a portion of the patients clinically suspected of iNPH would respond to surgical intervention. A cerebrospinal fluid (CSF) tap test is usually used to predict surgery outcomes and hence aid clinical decision-making, but the workup varies. We introduce the CSF tap test conducted at our center and examine its power by analyzing data from a series of iNPH cases that underwent shunt placement. We analyze common features in the past medical history of our patients and investigate whether they are related to the etiology of iNPH. METHODS: Data from 20 patients who were positive in the tap tests preoperatively and received ventriculoperitoneal shunting (VPS) were retrospectively analyzed. Preoperative and postoperative performance data were analyzed. History of any underlying medical conditions was taken into consideration. Patients with negative tap test results of the same period were also followed up. RESULTS: We performed VPS placement in 20 NPH patients from October 2019 to February 2022. Of these, 90% exhibited improvement in at least 1 of the clinical triad, proving the predictive power of the Peking Union Medical College Hospital test workflow. The underlying conditions like hypertension, diabetes and insufficiency in cerebral blood supply were also found to be associated with the onset of NPH. CONCLUSION: Our evaluation system is a valid tool for NPH assessment and can guide clinical decision-making. Comorbidities should be taken into consideration as they contribute to the pathogenesis and progression of NPH. Better identification of potential iNPH patients will lower the burden exerted on the family and the aging society.


Subject(s)
Hydrocephalus, Normal Pressure , Humans , Hydrocephalus, Normal Pressure/diagnosis , Hydrocephalus, Normal Pressure/surgery , Cerebrospinal Fluid Shunts/methods , Retrospective Studies , Treatment Outcome , Ventriculoperitoneal Shunt
19.
Eur Radiol ; 33(6): 4052-4062, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36472694

ABSTRACT

OBJECTIVES: Preventing the expansion of perihematomal edema (PHE) represents a novel strategy for the improvement of neurological outcomes in intracerebral hemorrhage (ICH) patients. Our goal was to predict early and delayed PHE expansion using a machine learning approach. METHODS: We enrolled 550 patients with spontaneous ICH to study early PHE expansion, and 389 patients to study delayed expansion. Two imaging researchers rated the shape and density of hematoma in non-contrast computed tomography (NCCT). We trained a radiological machine learning (ML) model, a radiomics ML model, and a combined ML model, using data from radiomics, traditional imaging, and clinical indicators. We then validated these models on an independent dataset by using a nested 4-fold cross-validation approach. We compared models with respect to their predictive performance, which was assessed using the receiver operating characteristic curve. RESULTS: For both early and delayed PHE expansion, the combined ML model was most predictive (early/delayed AUC values were 0.840/0.705), followed by the radiomics ML model (0.799/0.663), the radiological ML model (0.779/0.631), and the imaging readers (reader 1: 0.668/0.565, reader 2: 0.700/0.617). CONCLUSION: We validated a machine learning approach with high interpretability for the prediction of early and delayed PHE expansion. This new technique may assist clinical practice for the management of neurocritical patients with ICH. KEY POINTS: • This is the first study to use artificial intelligence technology for the prediction of perihematomal edema expansion. • A combined machine learning model, trained on data from radiomics, clinical indicators, and imaging features associated with hematoma expansion, outperformed all other methods.


Subject(s)
Artificial Intelligence , Brain Edema , Humans , Brain Edema/diagnostic imaging , Brain Edema/etiology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Edema/diagnostic imaging , Edema/complications , Machine Learning , Hematoma/complications , Hematoma/diagnostic imaging
20.
Sci Total Environ ; 863: 160961, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36529399

ABSTRACT

The hydrological regime is one of the most significant characteristics of wetlands, which maintains the structural and functional integrity of wetland ecosystems. China experienced rapid economic development since the 1990s, which caused severe degradation of all types of wetlands, especially marsh wetlands that are easily converted through filling or draining. Therefore, it is crucial to examine the inundation alterations in marshes as well as the forces behind the changes. In this study, the inundation dynamics in marsh wetlands of China were documented using time-series Landsat observations from 1992 to 2018. Then, nighttime light data was utilized to indicate the intensity of urbanization and infrastructure construction, which was incorporated with historical statistics to conduct attribution analyses of wetland inundation changes. Great spatial heterogeneity in the water distribution and change trajectory was observed in different areas. Severe wetland desiccation took place in Inner Mongolia and East China, in which the inundation area decreased by 51.3 % and 20.9 %, respectively. By contrast, the water area in North China and Tibetan Plateau increased by 58.2 % and 21.0 %, respectively. Behind the tremendous changes, anthropogenic factors played dominant roles. The marsh wetlands in East China, North China, and Southwest China took up only 1.9 % of the total marsh area but accounted for 26.0 % of the entire nighttime light volume. In East China and Southwest China, urbanization and infrastructure construction had significantly negative effects on wetland inundation. Overgrazing or unregulated irrigation altered the original inundation dynamics of marsh wetlands in Inner Mongolia, Southwest China, the Tibetan plateau, and Northeast China. This study illustrated the possible driving forces behind wetland inundation changes, which could help to locate degrading marsh wetlands triggered by anthropogenic activities. Then, targeted management and conservation actions could be implemented.


Subject(s)
Ecosystem , Wetlands , Humans , Remote Sensing Technology , Time Factors , China , Water
SELECTION OF CITATIONS
SEARCH DETAIL