Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 8163, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289346

ABSTRACT

This study introduces a synthetic biology approach that reprograms the yeast mating-type switching mechanism for tunable cell differentiation, facilitating synthetic microbial consortia formation and cooperativity. The underlying mechanism was engineered into a genetic logic gate capable of inducing asymmetric sexual differentiation within a haploid yeast population, resulting in a consortium characterized by mating-type heterogeneity and tunable population composition. The utility of this approach in microbial consortia cooperativity was demonstrated through the sequential conversion of xylan into xylose, employing haploids of opposite mating types each expressing a different enzyme of the xylanolytic pathway. This strategy provides a versatile framework for producing and fine-tuning functionally heterogeneous yet isogenic yeast consortia, furthering the advancement of microbial consortia cooperativity and offering additional avenues for biotechnological applications.


Subject(s)
Genes, Mating Type, Fungal , Saccharomyces cerevisiae , Synthetic Biology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Genes, Mating Type, Fungal/genetics , Synthetic Biology/methods , Cell Differentiation , Haploidy , Xylose/metabolism , Gene Expression Regulation, Fungal
2.
Nat Commun ; 15(1): 4343, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773197

ABSTRACT

Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.


Subject(s)
Lactobacillus plantarum , Prodrugs , Xenograft Model Antitumor Assays , Prodrugs/pharmacology , Prodrugs/therapeutic use , Animals , Humans , Mice , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/microbiology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/pathology , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Nude , Female , Mice, Inbred BALB C
3.
Cell Res ; 34(3): 245-257, 2024 03.
Article in English | MEDLINE | ID: mdl-38302740

ABSTRACT

Mutations in the orphan transporter MFSD7c (also known as Flvcr2), are linked to Fowler syndrome. Here, we used Mfsd7c knockout (Mfsd7c-/-) mice and cell-based assays to reveal that MFSD7c is a choline transporter at the blood-brain barrier (BBB). We performed comprehensive metabolomics analysis and detected differential changes of metabolites in the brains and livers of Mfsd7c-/-embryos. Particularly, we found that choline-related metabolites were altered in the brains but not in the livers of Mfsd7c-/- embryos. Thus, we hypothesized that MFSD7c regulates the level of choline in the brain. Indeed, expression of human MFSD7c in cells significantly increased choline uptake. Interestingly, we showed that choline uptake by MFSD7c is greatly increased by choline-metabolizing enzymes, leading us to demonstrate that MFSD7c is a facilitative transporter of choline. Furthermore, single-cell patch clamp analysis showed that the import of choline by MFSD7c is electrogenic. Choline transport function of MFSD7c was shown to be conserved in vertebrates, but not in yeasts. We demonstrated that human MFSD7c is a functional ortholog of HNM1, the yeast choline importer. We also showed that several missense mutations identified in patients exhibiting Fowler syndrome had abolished or reduced choline transport activity. Mice lacking Mfsd7c in endothelial cells of the central nervous system suppressed the import of exogenous choline from blood but unexpectedly had increased choline levels in the brain. Stable-isotope tracing study revealed that MFSD7c was required for exporting choline derived from lysophosphatidylcholine in the brain. Collectively, our work identifies MFSD7c as a choline exporter at the BBB and provides a foundation for future work to reveal the disease mechanisms of Fowler syndrome.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Polycystic Ovary Syndrome , Urination Disorders , Animals , Humans , Mice , Biological Transport , Brain , Choline
4.
Cell Genom ; 3(11): 100435, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38020970

ABSTRACT

Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.

5.
Front Bioeng Biotechnol ; 11: 1191162, 2023.
Article in English | MEDLINE | ID: mdl-37288353

ABSTRACT

Uric acid disequilibrium is implicated in chronic hyperuricemia-related diseases. Long-term monitoring and lowering of serum uric acid levels may be crucial for diagnosis and effective management of these conditions. However, current strategies are not sufficient for accurate diagnosis and successful long-term management of hyperuricemia. Moreover, drug-based therapeutics can cause side effects in patients. The intestinal tract plays an important role in maintaining healthy serum acid levels. Hence, we investigated the engineered human commensal Escherichia coli as a novel method for diagnosis and long-term management of hyperuricemia. To monitor changes in uric acid concentration in the intestinal lumen, we developed a bioreporter using the uric acid responsive synthetic promoter, pucpro, and uric acid binding Bacillus subtilis PucR protein. Results demonstrated that the bioreporter module in commensal E. coli can detect changes in uric acid concentration in a dose-dependent manner. To eliminate the excess uric acid, we designed a uric acid degradation module, which overexpresses an E. coli uric acid transporter and a B. subtilis urate oxidase. Strains engineered with this module degraded all the uric acid (250 µM) found in the environment within 24 h, which is significantly lower (p < 0.001) compared to wild type E. coli. Finally, we designed an in vitro model using human intestinal cell line, Caco-2, which provided a versatile tool to study the uric acid transport and degradation in an environment mimicking the human intestinal tract. Results showed that engineered commensal E. coli reduced (p < 0.01) the apical uric acid concentration by 40.35% compared to wild type E. coli. This study shows that reprogramming E. coli holds promise as a valid alternative synthetic biology therapy to monitor and maintain healthy serum uric acid levels.

6.
PLoS Biol ; 21(4): e3002116, 2023 04.
Article in English | MEDLINE | ID: mdl-37099620

ABSTRACT

Since its inception, synthetic biology has overcome many technical barriers but is at a crossroads for high-precision biological design. Devising ways to fully utilize big biological data may be the key to achieving greater heights in synthetic biology.


Subject(s)
Big Data , Synthetic Biology
7.
Front Bioeng Biotechnol ; 11: 1090501, 2023.
Article in English | MEDLINE | ID: mdl-36923462

ABSTRACT

Candida albicans is an opportunistic pathogen, with its infection as one of the causes of morbidity or mortality. Notably, the probiotic yeast Saccharomyces cerevisiae var. boulardii has shown the potential to fight against Candida infections. In this study, we aimed to engineer a commercial boulardii strain to produce medium-chain fatty acids (MCFAs) with antagonistic effects against C. albicans. First, we identified and characterized a boulardii strain and created its auxotrophic strain Δura3. Next, we constructed and expressed a heterologous MCFA biosynthetic pathway under the control of inducible and constitutive promoters. Aside from examining MCFA production and secretion, we confirmed MCFAs' effects on C. albicans' anti-biofilm and anti-hyphal formations and the immunomodulatory effect of MCFA-containing supernatants on Caco-2 cells. We found that under constitutive promoters, the engineered boulardii strain constitutively produced and secreted a mixture of C6:0, C8:0, and C10:0. The secreted MCFAs then reduced biofilm and hyphal formations in C. albicans SC5314. We also confirmed that MCFAs upregulated the expression of virulence-related genes in SC5314. Furthermore, we found that the constitutively produced MCFAs in the supernatant induced the upregulation of immune response genes in Caco-2 cells co-cultured with SC5314, indicating MCFAs' roles in immunomodulation. Overall, the engineered boulardii strain produced and secreted MCFAs, as well as demonstrated antagonistic effects against C. albicans SC5314 and immune-modulatory effects in Caco-2. To our knowledge, this represents the first study tackling the metabolic engineering of a commercial probiotic yeast strain to constitutively produce and secrete MCFAs showing anti-Candida effects. Our study forms the basis of the potential development of a live biotherapeutics probiotic yeast against Candida infections through metabolic engineering strategies.

8.
ACS Biomater Sci Eng ; 9(9): 5123-5135, 2023 09 11.
Article in English | MEDLINE | ID: mdl-36399014

ABSTRACT

The etiology of inflammatory bowel diseases (IBDs) frequently results in the uncontrolled inflammation of intestinal epithelial linings and the local environment. Here, we hypothesized that interferon-driven immunomodulation could promote anti-inflammatory effects. To test this hypothesis, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce and secrete a type III interferon, interferon lambda 1 (IFNL1), in response to nitric oxide (NO), a well-known colorectal inflammation marker. We then validated the anti-inflammatory effects of the engineered EcN strains in two in vitro models: a Caco-2/Jurkat T cell coculture model and a scaffold-based 3D coculture IBD model that comprises intestinal epithelial cells, myofibroblasts, and T cells. The IFNL1-expressing EcN strains upregulated Foxp3 expression in T cells and thereafter reduced the production of pro-inflammatory cytokines such as IL-13 and -33, significantly ameliorating inflammation. The engineered strains also rescued the integrity of the inflamed epithelial cell monolayer, protecting epithelial barrier integrity even under inflammation. In the 3D coculture model, IFNL1-expressing EcN treatment enhanced the population of regulatory T cells and increased anti-inflammatory cytokine IL-10. Taken together, our study showed the anti-inflammatory effects of IFNL1-expressing probiotics in two in vitro IBD models, demonstrating their potential as live biotherapeutics for IBD immunotherapy.


Subject(s)
Inflammatory Bowel Diseases , Probiotics , Humans , Caco-2 Cells , Interferon Lambda , Escherichia coli , Inflammatory Bowel Diseases/drug therapy , Cytokines/metabolism , Cytokines/therapeutic use , Inflammation , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Probiotics/pharmacology , Probiotics/therapeutic use
9.
Chem Rev ; 123(1): 31-72, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36317983

ABSTRACT

The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.


Subject(s)
Microbiota , Humans , Technology
10.
Methods Mol Biol ; 2553: 21-39, 2023.
Article in English | MEDLINE | ID: mdl-36227537

ABSTRACT

This chapter outlines the myriad applications of machine learning (ML) in synthetic biology, specifically in engineering cell and protein activity, and metabolic pathways. Though by no means comprehensive, the chapter highlights several prominent computational tools applied in the field and their potential use cases. The examples detailed reinforce how ML algorithms can enhance synthetic biology research by providing data-driven insights into the behavior of living systems, even without detailed knowledge of their underlying mechanisms. By doing so, ML promises to increase the efficiency of research projects by modeling hypotheses in silico that can then be tested through experiments. While challenges related to training dataset generation and computational costs remain, ongoing improvements in ML tools are paving the way for smarter and more streamlined synthetic biology workflows that can be readily employed to address grand challenges across manufacturing, medicine, engineering, agriculture, and beyond.


Subject(s)
Machine Learning , Synthetic Biology , Algorithms , Metabolic Networks and Pathways
11.
Biosens Bioelectron ; 222: 115002, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36527830

ABSTRACT

Nucleic acid detection is crucial for monitoring diseases for which rapid, sensitive, and easy-to-deploy diagnostic tools are needed. CRISPR-based technologies can potentially fulfill this need for nucleic acid detection. However, their widespread use has been restricted by the requirement of a protospacer adjacent motif in the target and extensive guide RNA optimization. In this study, we developed FELICX, a technique that can overcome these limitations and provide a useful alternative to existing technologies. FELICX comprises flap endonuclease, Taq ligase and CRISPR-Cas for diagnostics (X) and can be used for detecting nucleic acids and single-nucleotide polymorphisms. This method can be deployed as a point-of-care test, as only two temperatures are needed without thermocycling for its functionality, with the result generated on lateral flow strips. As a proof-of-concept, we showed that up to 0.6 copies/µL of DNA and RNA could be detected by FELICX in 60 min and 90 min, respectively, using simulated samples. Additionally, FELICX could be used to probe any base pair, unlike other CRISPR-based technologies. Finally, we demonstrated the versatility of FELICX by employing it for virus detection in infected human cells, the identification of antibiotic-resistant bacteria, and cancer diagnostics using simulated samples. Based on its unique advantages, we envision the use of FELICX as a next-generation CRISPR-based technology in nucleic acid diagnostics.


Subject(s)
Biosensing Techniques , Nucleic Acids , Humans , CRISPR-Cas Systems/genetics , Flap Endonucleases/genetics , RNA , Nucleic Acid Amplification Techniques/methods
12.
Open Forum Infect Dis ; 9(8): ofac379, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36004314

ABSTRACT

Host factors leading to pulmonary nontuberculous mycobacteria (PNTM) disease are poorly understood compared with disseminated NTM disease, which is linked to the interleukin 12-interferon gamma signaling pathway. We investigated the tumor necrosis factor receptor associated factor 3 (TRAF3) R338W variant in a patient with recurrent PNTM infection, demonstrating TRAF3- and TNF-α-deficient phenotypes via ex vivo immune and cloning-transfection cellular studies.

13.
Nat Commun ; 13(1): 3834, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35787625

ABSTRACT

Clostridioides difficile infection (CDI) results in significant morbidity and mortality in hospitalised patients. The pathogenesis of CDI is intrinsically related to the ability of C. difficile to shuffle between active vegetative cells and dormant endospores through the processes of germination and sporulation. Here, we hypothesise that dysregulation of microbiome-mediated bile salt metabolism contributes to CDI and that its alleviation can limit the pathogenesis of CDI. We engineer a genetic circuit harbouring a genetically encoded sensor, amplifier and actuator in probiotics to restore intestinal bile salt metabolism in response to antibiotic-induced microbiome dysbiosis. We demonstrate that the engineered probiotics limited the germination of endospores and the growth of vegetative cells of C. difficile in vitro and further significantly reduced CDI in model mice, as evidenced by a 100% survival rate and improved clinical outcomes. Our work presents an antimicrobial strategy that harnesses the host-pathogen microenvironment as the intervention target to limit the pathogenesis of infection.


Subject(s)
Clostridioides difficile , Clostridium Infections , Probiotics , Animals , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts/metabolism , Clostridioides difficile/genetics , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control , Mice , Spores, Bacterial/metabolism
14.
Curr Opin Biotechnol ; 76: 102740, 2022 08.
Article in English | MEDLINE | ID: mdl-35660478

ABSTRACT

Single-cell proteins (SCPs) have been widely used in human food and animal feed applications, still, there are challenges in their production and commercialization. Recently, advances in microbial synthetic biology, genomic engineering, and biofoundry technologies have offered capabilities to effectively and rapidly engineer microorganisms for improving the productivity, nutritional, and functional quality of SCPs. In this review, we discuss various synthetic biology, genomic engineering, and biofoundry tools that can be harnessed for SCP production and genetic modification. We also describe the current and potential applications of genetic modification in producing intermediate feedstocks, as well as biomass-based and multifunctional SCPs. Finally, we discuss the technological and policy-control related challenges encountered when deploying genetic modification in SCP production for animal feed and human food applications.


Subject(s)
Gene Editing , Synthetic Biology , Animals , Biomass , Humans , Metabolic Engineering
15.
Adv Drug Deliv Rev ; 187: 114364, 2022 08.
Article in English | MEDLINE | ID: mdl-35654214

ABSTRACT

The human body is a natural habitat for a multitude of microorganisms, with bacteria being the major constituent of the microbiota. These bacteria colonize discrete anatomical locations that provide suitable conditions for their survival. Many bacterial species, both symbiotic and pathogenic, interact with the host via biochemical signaling. Based on these attributes, commensal and attenuated pathogenic bacteria have been engineered to deliver therapeutic molecules to target specific diseases. Recent advances in synthetic biology have enabled us to perform complex genetic modifications in live bacteria and bacteria-derived particles, which simulate micron or submicron lipid-based vectors, for the targeted delivery of therapeutic agents. In this review, we highlight various examples of engineered bacteria or bacteria-derived particles that encapsulate, secrete, or surface-display therapeutic molecules for the treatment or prevention of various diseases. The review highlights recent studies on (i) the production of therapeutics by microbial cell factories, (ii) disease-triggered release of therapeutics by sense and respond systems, (iii) bacteria targeting tumor hypoxia, and (iv) bacteria-derived particles as chassis for drug delivery. In addition, we discuss the potential of such drug delivery systems to be translated into clinical therapies.


Subject(s)
Microbiota , Synthetic Biology , Bacteria/genetics , Drug Delivery Systems , Humans
16.
Curr Opin Biotechnol ; 76: 102731, 2022 08.
Article in English | MEDLINE | ID: mdl-35569342

ABSTRACT

Biosensors could enable a wide range of applications in environmental monitoring, pathogen detection, and biomarker diagnostics. While conventional diagnostic platforms like chemical sensors and PCR-based assays are capable of highly sensitive detection in laboratory conditions, their configurations, production cost, and operational requirements are not suitable for applications beyond the laboratory. Recent advances in synthetic biology, bioelectronics, and materials sciences have paved the way for the creation of novel microbial biosensing devices, which integrate core synthetic biosensors with state-of-the-art deployment platforms to create unique biosensor products. Here, we review the latest developments in microbial biosensing devices and discuss challenges and perspectives towards realizing their broad applications in real-world settings.


Subject(s)
Biosensing Techniques , Biomarkers , Synthetic Biology
17.
Nat Mater ; 21(4): 382-383, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35361950
18.
Front Bioeng Biotechnol ; 10: 838732, 2022.
Article in English | MEDLINE | ID: mdl-35372305

ABSTRACT

Biosensors can be used for real-time monitoring of metabolites and high-throughput screening of producer strains. Use of biosensors has facilitated strain engineering to efficiently produce value-added compounds. Following our recent work on the production of short branched-chain fatty acids (SBCFAs) in engineered Saccharomyces cerevisiae, here we harnessed a weak organic acid transporter Pdr12p, engineered a whole-cell biosensor to detect exogenous and intracellular SBCFAs and optimized the biosensor's performance by varying PDR12 expression. We firstly constructed the biosensor and evaluated its response to a range of short-chain carboxylic acids. Next, we optimized its sensitivity and operational range by deletion and overexpression of PDR12. We found that the biosensor responded to exogenous SBCFAs including isovaleric acid, isobutyric acid and 2-methylbutanoic acid. PDR12 deletion enhanced the biosensor's sensitivity to isovaleric acid at a low concentration and PDR12 overexpression shifted the operational range towards a higher concentration. Lastly, the deletion of PDR12 improved the biosensor's sensitivity to the SBCFAs produced in our previously engineered SBCFA-overproducing strain. To our knowledge, our work represents the first study on employing an ATP-binding-cassette transporter to engineer a transcription-factor-based genetic biosensor for sensing SBCFAs in S. cerevisiae. Our findings provide useful insights into SBCFA detection by a genetic biosensor that will facilitate the screening of SBCFA-overproducing strains.

19.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Article in English | MEDLINE | ID: mdl-34786712

ABSTRACT

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Subject(s)
Congresses as Topic/trends , Genetic Engineering/trends , Genetic Therapy/trends , Research Report , Synthetic Biology/trends , Animals , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Gene Targeting/methods , Gene Targeting/trends , Genetic Engineering/methods , Genetic Therapy/methods , Humans , Killer Cells, Natural/immunology , Machine Learning/trends , Synthetic Biology/methods , T-Lymphocytes/immunology
20.
Biotechnol J ; 16(12): e2100059, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34499423

ABSTRACT

Given the potential applications of gas vesicles (GVs) in multiple fields including antigen-displaying and imaging, heterologous reconstitution of synthetic GVs is an attractive and interesting study that has translational potential. Here, we attempted to express and assemble GV proteins (GVPs) into GVs using the model eukaryotic organism Saccharomyces cerevisiae. We first selected and expressed two core structural proteins, GvpA and GvpC from cyanobacteria Anabaena flos-aquae and Planktothrix rubescens, respectively. We then optimized the protein production conditions and validated GV assembly in the context of GV shapes. We found that when two copies of anaA were integrated into the genome, the chromosomal expression of AnaA resulted in GV production regardless of GvpC expression. Next, we co-expressed chaperone-RFP with the GFP-AnaA to aid the AnaA aggregation. The co-expression of individual chaperones (Hsp42, Sis1, Hsp104, and GvpN) with AnaA led to the formation of larger inclusions and enhanced the sequestration of AnaA into the perivacuolar site. To our knowledge, this represents the first study on reconstitution of GVs in S. cerevisiae. Our results could provide insights into optimizing conditions for heterologous protein production as well as the reconstitution of other synthetic microcompartments in yeast.


Subject(s)
Cyanobacteria , Saccharomyces cerevisiae Proteins , Bacterial Proteins/genetics , Cyanobacteria/genetics , Heat-Shock Proteins/genetics , Membrane Proteins , Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL