Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biomed Pharmacother ; 170: 116077, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154274

ABSTRACT

Hepatitis D virus (HDV), which co-infects or superinfects patients with hepatitis B virus, is estimated to affect 74 million people worldwide. Chronic hepatitis D is the most severe form of viral hepatitis and can result in liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Currently, there are no efficient HDV-specific drugs. Therefore, there is an urgent need for novel HDV therapies that can achieve a functional cure or even eliminate the viral infection. In the HDV life cycle, agents targeting the entry step of HDV infection preemptively reduce the intrahepatic viral RNA. Human sodium taurocholate co-transporting polypeptide (hNTCP), a transporter of bile acids on the plasma membrane of hepatocytes, is an essential entry receptor of HDV and is a promising molecular target against HDV infection. Here, we investigated the effect of ergosterol peroxide (EP) on HDV infection in vitro and in vivo. EP inhibited HDV infection of hNTCP-expressing dHuS-E/2 hepatocytes by interrupting the early fusion/endocytosis step of HDV entry. Furthermore, molecular modeling suggested that EP hinders LHBsAg binding to hNTCP by blocking access to S267 and V263. In addition, we generated hNTCP-expressing transgenic (Tg) C57BL/6 mice using the Cre/loxP system for in vivo study. EP reduced the liver HDV RNA level of HDV-challenged hNTCP-Cre Tg mice. Intriguingly, EP downregulated the mRNA level of liver IFN-γ. We demonstrate that EP is a bona fide HDV entry inhibitor that acts on hNTCP and has the potential for use in HDV therapies.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis D , Liver Neoplasms , Symporters , Mice , Animals , Humans , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Mice, Inbred C57BL , Hepatitis D/drug therapy , Hepatitis D/pathology , Hepatitis B virus/physiology , Hepatocytes , Mice, Transgenic , Symporters/metabolism
2.
Vaccine ; 41(21): 3337-3346, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37085450

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Mice , Humans , Antibodies, Neutralizing , Antibodies, Viral , Dipeptidyl Peptidase 4 , Immunity, Cellular , Mice, Transgenic , Adjuvants, Immunologic , Recombinant Proteins , Vaccines, Subunit , Spike Glycoprotein, Coronavirus
3.
Virol J ; 19(1): 163, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253859

ABSTRACT

BACKGROUND: Hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), is a small, defective RNA virus strongly associated with the most severe form of hepatitis and progressive chronic liver disease and cirrhosis. Chronic hepatitis D, resulting from HBV/HDV coinfection, is considered to be the most severe form of viral hepatitis and affects 12-20 million people worldwide. Involved in the endocytosis and exocytosis of cellular and viral proteins, clathrin contributes to the pathogenesis and morphogenesis of HDV. Previously, we demonstrated that HDV-I and -II large hepatitis delta antigens (HDAg-L) possess a putative clathrin box that interacts with clathrin heavy chain (CHC) and supports HDV assembly. METHODS: Virus assembly and vesicular trafficking of HDV virus-like particles (VLPs) were evaluated in Huh7 cells expressing HDV-I, -II and -III HDAg-L and hepatitis B surface antigen (HBsAg). To elucidate the interaction motif between HDAg-L and CHC, site-directed mutagenesis was performed to introduce mutations into HDAg-L and CHC and analyzed using coimmunoprecipitation or pull-down assays. RESULTS: Comparable to HDV-I virus-like particles (VLPs), HDV-III VLPs were produced at a similar level and secreted into the medium via clathrin-mediated post-Golgi vesicular trafficking. Mutation at F27 or E33 of CHC abolished the binding of CHC to the C-terminus of HDV-III HDAg-L. Mutation at W207 of HDV-III HDAg-L inhibited its association with CHC and interfered with HDV-III VLP formation. We elucidated mechanism of the binding of HDV-III HDAg-L to CHC and confirmed the pivotal role of clathrin binding in the assembly of genotype III HDV. CONCLUSIONS: A novel W box which was identified at the C terminus of HDV-III HDAg-L is known to differ from the conventional clathrin box but also interacts with CHC. The novel W box of HDAg-L constitutes a new molecular target for anti-HDV-III therapeutics.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis Delta Virus , Clathrin/metabolism , Clathrin Heavy Chains/genetics , Clathrin Heavy Chains/metabolism , Genotype , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/genetics , Hepatitis Delta Virus/genetics , Hepatitis delta Antigens/chemistry , Hepatitis delta Antigens/genetics , Hepatitis delta Antigens/metabolism , Humans , RNA, Viral/metabolism , Viral Proteins/genetics , Virus Replication
4.
Biochem J ; 478(12): 2321-2337, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34076705

ABSTRACT

LMBD1 was previously demonstrated to regulate the endocytosis of insulin receptor on the cell surface and to mediate the export of cobalamin from the lysosomes to the cytosol, but little is known about its function in mitosis. In this study, interactome analysis data indicate that LMBD1 is involved in cytoskeleton regulation. Both immunoprecipitation and GST pulldown assays demonstrated the association of LMBD1 with tubulin. Immunofluorescence staining also showed the colocalization of LMBD1 with microtubule in both interphase and mitotic cells. LMBD1 specifically accelerates microtubule assembly dynamics in vitro and antagonizes the microtubule-disruptive effect of vinblastine. In addition, LMBRD1-knockdown impairs mitotic spindle formation, inhibits tubulin polymerization, and diminishes the mitosis-associated tubulin acetylation. The reduced acetylation can be reversed by ectopic expression of LMBD1 protein. These results suggest that LMBD1 protein stabilizes microtubule intermediates. Furthermore, embryonic fibroblasts derived from Lmbrd1 heterozygous knockout mice showed abnormality in microtubule formation, mitosis, and cell growth. Taken together, LMBD1 plays a pivotal role in regulating microtubule assembly that is essential for the process of cell mitosis.


Subject(s)
Cytoskeleton/physiology , Microtubules/physiology , Mitosis , Nucleocytoplasmic Transport Proteins/metabolism , Nucleocytoplasmic Transport Proteins/physiology , Tubulin/chemistry , Animals , Cell Cycle , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Nucleocytoplasmic Transport Proteins/genetics , Protein Interaction Domains and Motifs , Spindle Apparatus/physiology
6.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295922

ABSTRACT

Type I and type III interferons (IFNs) are the frontline of antiviral defense mechanisms that trigger hundreds of downstream antiviral genes. In this study, we observed that MERS-CoV nucleocapsid (N) protein suppresses type I and type III IFN gene expression. The N protein suppresses Sendai virus-induced IFN-ß and IFN-λ1 by reducing their promoter activity and mRNA levels, as well as downstream IFN-stimulated genes (ISGs). Retinoic acid-inducible gene I (RIG-I) is known to recognize viral RNA and induce IFN expression through tripartite motif-containing protein 25 (TRIM25)-mediated ubiquitination of RIG-I caspase activation and recruitment domains (CARDs). We discovered that MERS-CoV N protein suppresses RIG-I-CARD-induced, but not MDA5-CARD-induced, IFN-ß and IFN-λ1 promoter activity. By interacting with TRIM25, N protein impedes RIG-I ubiquitination and activation and inhibits the phosphorylation of transcription factors IFN-regulatory factor 3 (IRF3) and NF-κB that are known to be important for IFN gene activation. By employing a recombinant Sindbis virus-EGFP replication system, we showed that viral N protein downregulated the production of not only IFN mRNA but also bioactive IFN proteins. Taken together, MERS-CoV N protein functions as an IFN antagonist. It suppresses RIG-I-induced type I and type III IFN production by interfering with TRIM25-mediated RIG-I ubiquitination. Our study sheds light on the pathogenic mechanism of how MERS-CoV causes disease.IMPORTANCE MERS-CoV causes death of about 35% of patients. Published studies showed that some coronaviruses are capable of suppressing interferon (IFN) expression in the early phase of infection and MERS-CoV proteins can modulate host immune response. In this study, we demonstrated that MERS-CoV nucleocapsid (N) protein suppresses the production of both type I and type III IFNs via sequestering TRIM25, an E3 ubiquitin ligase that is essential for activating the RIG-I signaling pathway. Ectopic expression of TRIM25 rescues the suppressive effect of the N protein. In addition, the C-terminal domain of the viral N protein plays a pivotal role in the suppression of IFN-ß promoter activity. Our findings reveal how MERS-CoV evades innate immunity and provide insights into the interplay between host immune response and viral pathogenicity.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus Infections/virology , DEAD Box Protein 58/metabolism , Interferon Type I/biosynthesis , Interferons/biosynthesis , Middle East Respiratory Syndrome Coronavirus/physiology , Nucleocapsid Proteins/metabolism , Signal Transduction , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Coronavirus Infections/genetics , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferons/genetics , Promoter Regions, Genetic , Protein Binding , Receptors, Immunologic , Transcription Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Interferon Lambda
7.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31462559

ABSTRACT

Hepatitis C virus (HCV) NS3 protein possesses protease and helicase activities and is considered an oncoprotein in virus-derived hepatocellular carcinoma. The NS3-associated oncogenesis has been studied but not fully understood. In this study, we have identified novel interactions of the NS3 protein with DNA repair factors, Werner syndrome protein (WRN) and Ku70, in both an HCV subgenomic replicon system and Huh7 cells expressing NS3. HCV NS3 protein inhibits WRN-mediated DNA repair and reduces the repair efficiency of nonhomologous end joining. It interferes with Ku70 recruitment to the double-strand break sites and alters the nuclear distribution of WRN-Ku repair complex. In addition, WRN is a substrate of the NS3/4A protease; the level of WRN protein is regulated by both the proteasome degradation pathway and HCV NS3/4A protease activity. The dual role of HCV NS3 and NS3/4A proteins in regulating the function and expression level of the WRN protein intensifies the effect of impairment on DNA repair. This may lead to an accumulation of DNA mutations and genome instability and, eventually, tumor development.IMPORTANCE HCV infection is a worldwide problem of public health and a major contributor to hepatocellular carcinoma. The single-stranded RNA virus with RNA-dependent RNA polymerase experiences a high error rate and develops strategies to escape the immune system and hepatocarcinogenesis. Studies have revealed the involvement of HCV proteins in the impairment of DNA repair. The present study aimed to further elucidate mechanisms by which the viral NS3 protein impairs the repair of DNA damage. Our results clearly indicate that HCV NS3/4A protease targets WRN for degradation, and, at the same time, diminishes the repair efficiency of nonhomologous end joining by interfering with the recruitment of Ku protein to the DNA double-strand break sites. The study describes a novel mechanism by which the NS3 protein influences DNA repair and provides new insight into the molecular mechanism of HCV pathogenesis.


Subject(s)
DNA End-Joining Repair , Hepacivirus/genetics , Hepacivirus/metabolism , Viral Nonstructural Proteins/metabolism , Werner Syndrome Helicase/metabolism , Cell Line , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair/physiology , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , HEK293 Cells , Hepatitis C, Chronic/genetics , Humans , Ku Autoantigen/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/genetics , Werner Syndrome Helicase/physiology
8.
Front Microbiol ; 10: 50, 2019.
Article in English | MEDLINE | ID: mdl-30761102

ABSTRACT

Nod-like receptor family, pyrin domain-containing 3 (NLRP3) regulates the secretion of proinflammatory cytokines interleukin 1 beta (IL-1ß) and IL-18. We previously showed that influenza virus M2 or encephalomyocarditis virus (EMCV) 2B proteins stimulate IL-1ß secretion following activation of the NLRP3 inflammasome. However, the mechanism by which severe acute respiratory syndrome coronavirus (SARS-CoV) activates the NLRP3 inflammasome remains unknown. Here, we provide direct evidence that SARS-CoV 3a protein activates the NLRP3 inflammasome in lipopolysaccharide-primed macrophages. SARS-CoV 3a was sufficient to cause the NLRP3 inflammasome activation. The ion channel activity of the 3a protein was essential for 3a-mediated IL-1ß secretion. While cells uninfected or infected with a lentivirus expressing a 3a protein defective in ion channel activity expressed NLRP3 uniformly throughout the cytoplasm, NLRP3 was redistributed to the perinuclear space in cells infected with a lentivirus expressing the 3a protein. K+ efflux and mitochondrial reactive oxygen species were important for SARS-CoV 3a-induced NLRP3 inflammasome activation. These results highlight the importance of viroporins, transmembrane pore-forming viral proteins, in virus-induced NLRP3 inflammasome activation.

9.
J Biomed Sci ; 25(1): 47, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29793506

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) consists of a positive-sense, single-stranded RNA genome and four structural proteins: the spike, envelope, membrane, and nucleocapsid protein. The assembly of the viral genome into virus particles involves viral structural proteins and is believed to be mediated through recognition of specific sequences and RNA structures of the viral genome. METHODS AND RESULTS: A culture system for the production of MERS coronavirus-like particles (MERS VLPs) was determined and established by electron microscopy and the detection of coexpressed viral structural proteins. Using the VLP system, a 258-nucleotide RNA fragment, which spans nucleotides 19,712 to 19,969 of the MERS-CoV genome (designated PS258(19712-19969)ME), was identified to function as a packaging signal. Assembly of the RNA packaging signal into MERS VLPs is dependent on the viral nucleocapsid protein. In addition, a 45-nucleotide stable stem-loop substructure of the PS258(19712-19969)ME interacted with both the N-terminal domain and the C-terminal domain of the viral nucleocapsid protein. Furthermore, a functional SARS-CoV RNA packaging signal failed to assemble into the MERS VLPs, which indicated virus-specific assembly of the RNA genome. CONCLUSIONS: A MERS-oV RNA packaging signal was identified by the detection of GFP expression following an incubation of MERS VLPs carrying the heterologous mRNA GFP-PS258(19712-19969)ME with virus permissive Huh7 cells. The MERS VLP system could help us in understanding virus infection and morphogenesis.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/physiology , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Virus Assembly/genetics , Cell Line, Tumor , HEK293 Cells , Humans , RNA, Messenger/metabolism
10.
J Formos Med Assoc ; 117(6): 471-479, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28549591

ABSTRACT

BACKGROUND/PURPOSE: LMBD1 protein, a type IV-B plasma membrane protein possessing nine putative trans-membrane domains, was previously demonstrated at cellular level to play a critical part in the signaling cascade of insulin receptor through its involvement in regulating clathrin-mediated endocytosis. However, at physiological level, the significance of LMBD1 protein in cardiac development remains unclear. METHODS: To understand the role of Lmbrd1 gene involved in the cardiac function, heterozygous knockout mice were used as an animal model system. The pathological outcomes were analyzed by micro-positron emission tomography, ECG acquisition, cardiac ultrasound, and immunohistochemistry. RESULTS: By studying the heterozygous knockout of Lmbrd1 (Lmbrd1+/-), we discovered that lack of Lmbrd1 not only resulted in the increase of cardiac-glucose uptake, pathological consequences were also observed. Here, we have distinguished that Lmbrd1+/- is sufficient in causing cardiac diseases through a pathway independent of the recessive vitamin B12 cblF cobalamin transport defect. Lmbrd1+/- mice exhibited an increase in myocardial glucose uptake and insulin receptor signaling that is insensitive to the administration of additional insulin. Pathological symptoms such as cardiac hypertrophy, ventricular tissue fibrosis, along with the increase of heart rate and cardiac muscle contractility were observed. As Lmbrd1+/- mice aged, the decrease in ejection fraction and fraction shortening showed signs of ventricular function deterioration. CONCLUSION: The results suggested that Lmbrd1 gene not only plays a significant role in mediating the energy homeostasis in cardiac tissue, it may also be a key factor in the regulation of cardiac function in mice.


Subject(s)
Cardiomegaly/genetics , Myocytes, Cardiac/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Receptor, Insulin/metabolism , Alleles , Animals , Cardiomegaly/diagnostic imaging , Disease Models, Animal , Echocardiography , Male , Mice , Mice, Knockout , Positron-Emission Tomography , Signal Transduction
11.
J Biol Chem ; 291(50): 26226-26238, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27807029

ABSTRACT

Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro205 was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cell Nucleus/metabolism , Hepatitis Delta Virus/physiology , Hepatitis delta Antigens/metabolism , Nuclear Localization Signals/metabolism , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Virion/metabolism , Virus Assembly/physiology , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/genetics , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Cell Nucleus/genetics , Cell Nucleus/virology , Hep G2 Cells , Hepatitis delta Antigens/genetics , Humans , Nuclear Localization Signals/genetics , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Peptides/pharmacology , Protein Domains , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Virion/genetics , Virus Assembly/drug effects
12.
J Biomed Sci ; 23: 14, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26801988

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. RESULTS: A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. CONCLUSIONS: A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Chlorocebus aethiops , Peptidyl-Dipeptidase A/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Vero Cells , Vimentin/genetics
13.
Liver Int ; 34(9): 1358-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25360475

ABSTRACT

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is highly associated with the type 2 diabetes mellitus, but the detailed mechanisms by which the viral proteins are involved in the clinical outcome remain unclear. METHODS: A cDNA microarray analysis was performed following introducing an NS5A-encoding plasmid or a control vector into a mouse system by hydrodynamics- based transfection. Differentially expressed genes that are associated with gluconeogenesis were selected and their expression levels in HCV patients, in NS5A-expressing systems, and in the viral subgenomic replicon system were further examined by real-time quantitative polymerase chain reaction and Western blot analysis. RESULTS: Differential gene expression including an upregulation of the gluconeogenic rate-limiting enzyme phosphoenolpyruvate carboxykinase (PEPCK) compared with controls was detected in mouse hepatocytes expressing HCV NS5A and in HCV patients with diabetes. In addition, an NS5A-dependent increase in glucose production was demonstrated in human primary hepatocytes. The upregulation of PEPCK and peroxisome proliferator-activated receptor-c coactivator-1a (PGC-1a) were also detected in NS5A-expressing cells and in the viral genotype 1b subgenomic replicon system. Further studies demonstrated that the NS5A-mediated upregulation of PEPCK and PGC-1a genes were resulted from the activation of PI3K-Akt and JNK signalling pathways. In addition, the expression levels of the forkhead transcription factor FoxO1 and the liver-enriched transcription factor HNF-4a were increased in HCV NS5A expressing cells. CONCLUSIONS: By upregulating the expression of PEPCK gene via its transactivators FoxO1 and HNF-4a, and the coactivator PGC-1a, the NS5A promotes the production of hepatic glucose which may contribute to the development of HCV-associated type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2/virology , Gene Expression Regulation/physiology , Gluconeogenesis/physiology , Hepacivirus/metabolism , Hepatitis C/complications , Signal Transduction/physiology , Viral Nonstructural Proteins/metabolism , Animals , Blotting, Western , Diabetes Mellitus, Type 2/etiology , Glucose/metabolism , Hepatocytes/metabolism , Humans , MAP Kinase Kinase 4/metabolism , Mice , Oligonucleotide Array Sequence Analysis , Oncogene Protein v-akt/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Real-Time Polymerase Chain Reaction , Transfection
14.
J Biol Chem ; 288(45): 32424-32432, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24078630

ABSTRACT

Energy homeostasis is crucial for maintaining normally functioning cells; disturbances in this balance often cause various diseases. The limb region 1 (LMBR1) domain containing 1 gene (lmbrd1) encodes the LMBD1 protein that possesses 9 putative transmembrane domains. LMBD1 has been suggested to be involved in the lysosome in aiding the export of cobalamin. In this study, we determined that LMBD1 plays a regulatory role in the plasma membrane. A micro-positron emission tomography analysis showed that a single-allele knock-out of lmbrd1 increased the (18)F-fluorodeoxyglucose uptake in murine hearts. In addition, the knockdown of lmbrd1 resulted in an up-regulated signaling of the insulin receptor (IR) and its downstream signaling molecule, Akt. Confocal and live total internal reflection fluorescence microscopy showed that LMBD1 co-localized and co-internalized with clathrin and the IR, but not with the transferrin receptor. The results of the mutation analysis and phenotypic rescue experiments indicate that LMBD1 interacts with adaptor protein-2 and is involved in the unique clathrin-mediated endocytosis of the IR. LMBD1 selectively interacts with the IR. The knockdown of lmbrd1 attenuated IR endocytosis, resulting in the perturbation of the IR recycling pathway and consequential enhancement of the IR signaling cascade. In summary, LMBD1 plays an imperative role in mediating and regulating the endocytosis of the IR.


Subject(s)
Endocytosis/physiology , Myocardium/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Receptor, Insulin/metabolism , Signal Transduction/physiology , Adaptor Protein Complex 2/genetics , Adaptor Protein Complex 2/metabolism , Animals , Cell Line , Clathrin/genetics , Clathrin/metabolism , Fluorodeoxyglucose F18/pharmacology , Gene Knockdown Techniques , Humans , Mice , Mice, Mutant Strains , Nucleocytoplasmic Transport Proteins/genetics , Positron-Emission Tomography , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Radiopharmaceuticals/pharmacology , Rats , Receptor, Insulin/genetics
15.
J Virol ; 87(3): 1596-604, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23175358

ABSTRACT

Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.


Subject(s)
Hepatitis Delta Virus/physiology , Hepatitis delta Antigens/metabolism , Host-Pathogen Interactions , Karyopherins/metabolism , Lamin Type A/metabolism , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Active Transport, Cell Nucleus , Humans , Immunoprecipitation , Protein Multimerization , Virus Assembly , Exportin 1 Protein
16.
J Virol ; 84(15): 7703-12, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20484496

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) was identified to be the causative agent of SARS with atypical pneumonia. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV. It is not clear whether ACE2 conveys signals from the cell surface to the nucleus and regulates expression of cellular genes upon SARS-CoV infection. To understand the pathogenesis of SARS-CoV, human type II pneumocyte (A549) cells were incubated with the viral spike protein or with SARS-CoV virus-like particles containing the viral spike protein to examine cytokine modulation in lung cells. Results from oligonucleotide-based microarray, real-time PCR, and enzyme-linked immunosorbent assays indicated an upregulation of the fibrosis-associated chemokine (C-C motif) ligand 2 (CCL2) by the viral spike protein and the virus-like particles. The upregulation of CCL2 by SARS-CoV spike protein was mainly mediated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and AP-1 but not the IkappaBalpha-NF-kappaB signaling pathway. In addition, Ras and Raf upstream of the ERK1/2 signaling pathway were involved in the upregulation of CCL2. Furthermore, ACE2 receptor was activated by casein kinase II-mediated phosphorylation in cells pretreated with the virus-like particles containing spike protein. These results indicate that SARS-CoV spike protein triggers ACE2 signaling and activates fibrosis-associated CCL2 expression through the Ras-ERK-AP-1 pathway.


Subject(s)
Chemokine CCL2/biosynthesis , Membrane Glycoproteins/immunology , Peptidyl-Dipeptidase A/metabolism , Severe acute respiratory syndrome-related coronavirus/immunology , Signal Transduction , Viral Envelope Proteins/immunology , Angiotensin-Converting Enzyme 2 , Cell Line , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/virology , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Spike Glycoprotein, Coronavirus , Up-Regulation
17.
Cell Transplant ; 19(2): 231-43, 2010.
Article in English | MEDLINE | ID: mdl-19906331

ABSTRACT

Oval cells and hepatocytes rarely proliferate simultaneously. This study aimed to determine the impacts of hepatocyte transplantation on the response and fate of oval cells that are activated to proliferate in acute severe hepatic injury. Retrorsine + D-galactosamine (R+D-gal) treatment was used to induce acute hepatic injury and to elicit extensive activation of oval cells in male dipeptidyl peptidase IV-deficient F344 rats. These rats were then randomized to receive wild-type hepatocyte transplantation or vehicle intraportally. The kinetics of oval cell response and their differentiation fate were analyzed. Results showed that oval cells were activated early and differentiated into hepatocytes in R+D-gal-treated rats without hepatocyte transplantation. With hepatocyte transplantation, the oval cells were recruited later and continued to proliferate in parallel with the massive proliferation of transplanted hepatocytes. They formed ductules and differentiated into biliary cells. When hepatocytes were transplanted at the day when oval cells were at their peak response, the numerous activated oval cells ceased to differentiate into hepatocytes and remained in ductular form. The ductular oval cells were capable of differentiating into hepatocytes again when the donor hepatocytes were inhibited to proliferate. We conclude that hepatocyte transplantation changes the mechanism of liver reconstitution and affects the differentiation fate of host oval cells in acute severe hepatic injury.


Subject(s)
Cell Differentiation , Chemical and Drug Induced Liver Injury , Hepatocytes/transplantation , Liver/injuries , Animals , Antineoplastic Agents, Phytogenic/toxicity , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/surgery , Dipeptidyl Peptidase 4/deficiency , Galactosamine/toxicity , Hepatocytes/cytology , Humans , Liver/cytology , Male , Pyrrolizidine Alkaloids/toxicity , Random Allocation , Rats , Rats, Inbred F344
18.
FEBS Lett ; 584(3): 482-6, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19958771

ABSTRACT

Hepatitis C virus (HCV) internal non-structural protein 3 (NS3) cleavage can occur in trans in the presence of NS4A. In this study, we have further demonstrated a critical role of the helicase domain in the internal NS3 cleavage, different from HCV polyprotein processing which requires only the serine protease domain. The NTPase domain of NS3 helicase interacts with the RNA binding domain to facilitate internal NS3 cleavage. In addition, NS3 protease activity contributes to the transforming ability of the major internal cleavage product NS3(1-402). These findings imply important roles of the internal cleavage and protease activity of the NS3 protein in the pathogenesis of HCV.


Subject(s)
Hepacivirus/enzymology , RNA Helicases/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Binding Sites , Cell Line , Cell Line, Tumor , Hepacivirus/genetics , Humans , Mice , NIH 3T3 Cells , Polyproteins/genetics , Polyproteins/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , RNA Helicases/chemistry , RNA Helicases/genetics , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
19.
J Virol ; 83(23): 12314-24, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19793827

ABSTRACT

Clathrin is involved in the endocytosis and exocytosis of cellular proteins and the process of virus infection. We have previously demonstrated that large hepatitis delta antigen (HDAg-L) functions as a clathrin adaptor, but the detailed mechanisms of clathrin involvement in the morphogenesis of hepatitis delta virus (HDV) are not clear. In this study, we found that clathrin heavy chain (CHC) is a key determinant in the morphogenesis of HDV. HDAg-L with a single amino acid substitution at the clathrin box retained nuclear export activity but failed to interact with CHC and to assemble into virus-like particles. Downregulation of CHC function by a dominant-negative mutant or by short hairpin RNA reduced the efficiency of HDV assembly, but not the secretion of hepatitis B virus subviral particles. In addition, the coexistence of a cell-permeable peptide derived from the C terminus of HDAg-L significantly interfered with the intracellular transport of HDAg-L. HDAg-L, small HBsAg, and CHC were found to colocalize with the trans-Golgi network and were highly enriched on clathrin-coated vesicles. Furthermore, genotype II HDV, which assembles less efficiently than genotype I HDV does, has a putative clathrin box in its HDAg-L but interacted only weakly with CHC. The assembly efficiency of the various HDV genotypes correlates well with the CHC-binding activity of their HDAg-Ls and coincides with the severity of disease outcome. Thus, the clathrin box and the nuclear export signal at the C terminus of HDAg-L are potential new molecular targets for HDV therapy.


Subject(s)
Clathrin Heavy Chains/metabolism , Hepatitis Delta Virus/physiology , Hepatitis delta Antigens/metabolism , Virus Assembly , Animals , Cell Line , Chlorocebus aethiops , Clathrin Heavy Chains/antagonists & inhibitors , Hepatitis delta Antigens/genetics , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Point Mutation , Protein Binding , Protein Transport
20.
Cell Transplant ; 18(10): 1081-92, 2009.
Article in English | MEDLINE | ID: mdl-19650970

ABSTRACT

Efficient repopulation by transplanted hepatocytes in the severely injured liver is essential for their clinical application in the treatment of acute hepatic failure. We studied here whether and how the transplanted hepatocytes are able to efficiently repopulate the toxin-induced acute injured liver. Male dipeptidyl peptidase IV-deficient F344 rats were randomized to receive retrorsine plus D-galactosamine (R+D-gal) treatment or D-galactosamine-alone (D-gal) to induce acute hepatic injury, and retrorsine-alone. In these models, retrorsine was used to inhibit the proliferation of endogenous hepatocytes while D-galactosamine induced acute hepatocyte damage. Wild-type hepatocytes (1 x 10(7)/ml) were transplanted intraportally 24 h after D-galactosamine or saline injection. The kinetics of proliferation and repopulation of transplanted cells and the kinetics of cytokine response, hepatic stellate cell (HSC) activation, and matrix metalloproteinase (MMP2) expression were analyzed. We observed that early entry of transplanted hepatocytes into the hepatic plates and massive repopulation of the liver by transplanted hepatocytes occurred in acute hepatic injury induced by R+D-gal treatment but not by D-gal-alone or retrorsine-alone. The expressions of transforming growth factor-alpha and hepatocyte growth factor genes in the R+D-gal injured liver were significantly upregulated and prolonged up to 4 weeks after hepatocyte transplantation. The expression kinetics were parallel with the efficient proliferation and repopulation of transplanted hepatocytes. HSC was activated rapidly, markedly, and prolongedly up to 4 weeks after hepatocyte transplantation, when the expression of HGF gene and repopulation of transplanted hepatocytes were reduced afterward. Furthermore, the expression kinetics of MMP2 and its specific distribution in the host areas surrounding the expanding clusters of transplanted hepatocytes are consistent with those of activated HSC. Impaired hepatocyte regeneration after acute severe hepatic injury may initiate serial compensatory repair mechanisms that facilitate the extensive repopulation by transplanted hepatocytes that enter early the hepatic plates.


Subject(s)
Chemical and Drug Induced Liver Injury/therapy , Hepatocytes/transplantation , Liver Failure, Acute/therapy , Liver Regeneration/physiology , Animals , Chemical and Drug Induced Liver Injury/pathology , Galactosamine/toxicity , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Liver Failure, Acute/pathology , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Pyrrolizidine Alkaloids/toxicity , Rats , Rats, Inbred F344 , Transforming Growth Factor alpha/genetics , Transforming Growth Factor alpha/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...