Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617281

ABSTRACT

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

2.
Chembiochem ; : e202300821, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564329

ABSTRACT

Bile acids are bioactive metabolites that are biotransformed into secondary bile acids by the gut microbiota, a vast consortium of microbes that inhabit the intestines. The first step in intestinal secondary bile acid metabolism is carried out by a critical enzyme, bile salt hydrolase (BSH), that catalyzes the gateway reaction that precedes all subsequent microbial metabolism of these important metabolites. As gut microbial metabolic activity is difficult to probe due to the complex nature of the gut microbiome, approaches are needed to profile gut microbiota-associated enzymes such as BSH. Here, we develop a panel of BSH activity-based probes (ABPs) to determine how changes in diurnal rhythmicity of gut microbiota-associated metabolism affects BSH activity and substrate preference. This panel of covalent probes enables determination of BSH activity and substrate specificity from multiple gut anerobic bacteria derived from the human and mouse gut microbiome. We found that both gut microbiota-associated BSH activity and substrate preference is rhythmic, likely due to feeding patterns of the mice. These results indicate that this ABP-based approach can be used to profile changes in BSH activity in physiological and disease states that are regulated by circadian rhythms.

3.
Nature ; 628(8006): 180-185, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480886

ABSTRACT

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Subject(s)
Citrobacter rodentium , Intestinal Mucosa , Receptors, Dopamine D2 , Tryptophan , Animals , Female , Humans , Male , Mice , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Bacterial Load/drug effects , Citrobacter rodentium/growth & development , Citrobacter rodentium/metabolism , Citrobacter rodentium/pathogenicity , Dietary Supplements , Disease Models, Animal , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli O157/pathogenicity , Escherichia coli O157/physiology , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Receptors, Dopamine D2/metabolism , Tryptophan/administration & dosage , Tryptophan/metabolism , Tryptophan/pharmacology
4.
Biochemistry ; 62(21): 3076-3084, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37883888

ABSTRACT

The human intestines are colonized by trillions of microbes, comprising the gut microbiota, which produce diverse small molecule metabolites and modify host metabolites, such as bile acids, that regulate host physiology. Biosynthesized in the liver, bile acids are conjugated with glycine or taurine and secreted into the intestines, where gut microbial bile salt hydrolases (BSHs) deconjugate the amino acid to produce unconjugated bile acids that serve as precursors for secondary bile acid metabolites. Among these include a recently discovered class of microbially conjugated bile acids (MCBAs), wherein alternative amino acids are conjugated onto bile acids. To elucidate the metabolic potential of MCBAs, we performed detailed kinetic studies to investigate the preference of BSHs for host-conjugated bile acids and MCBAs. We identified a BSH that exhibits positive cooperativity uniquely for MCBAs containing an aromatic side chain. Further molecular modeling and phylogenetic analyses indicated that the BSH preference for aromatic MCBAs is due to a substrate-specific cation-π interaction and is predicted to be widespread among human gut microbial BSHs.


Subject(s)
Amidohydrolases , Bile Acids and Salts , Humans , Phylogeny , Kinetics , Static Electricity , Amidohydrolases/metabolism
5.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808785

ABSTRACT

The human intestines are colonized by trillions of microbes, comprising the gut microbiota, which produce diverse small molecule metabolites and modify host metabolites, such as bile acids, that regulate host physiology. Biosynthesized in the liver, bile acids are conjugated with glycine or taurine and secreted into the intestines, where gut microbial bile salt hydrolases (BSHs) deconjugate the amino acid to produce unconjugated bile acids that serve as precursors for secondary bile acid metabolites. Among these include a recently discovered class of microbially-conjugated bile acids (MCBAs), wherein alternative amino acids are conjugated onto bile acids. To elucidate the metabolic potential of MCBAs, we performed detailed kinetic studies to investigate the preference of BSHs for host- and microbially-conjugated bile acids. We identified a BSH that exhibits positive cooperativity uniquely for MCBAs containing an aromatic sidechain. Further molecular modeling and phylogenetic analyses indicated that BSH preference for aromatic MCBAs is due to a substrate-specific cation-π interaction and is predicted to be widespread among human gut microbial BSHs.

6.
Isr J Chem ; 63(1-2)2023 Feb.
Article in English | MEDLINE | ID: mdl-37841997

ABSTRACT

Bacteria constitute a major lifeform on this planet and play numerous roles in ecology, physiology, and human disease. However, conventional methods to probe their activities are limited in their ability to visualize and identify their functions in these diverse settings. In the last two decades, the application of click chemistry to label these microbes has deepened our understanding of bacterial physiology. With the development of a plethora of chemical tools that target many biological molecules, it is possible to track these microorganisms in real-time and at unprecedented resolution. Here, we review click chemistry, including bioorthogonal reactions, and their applications in imaging bacterial glycans, lipids, proteins, and nucleic acids using chemical reporters. We also highlight significant advances that have enabled biological discoveries that have heretofore remained elusive.

7.
Isr J Chem ; 63(3-4)2023 Mar.
Article in English | MEDLINE | ID: mdl-37842282

ABSTRACT

Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.

8.
Curr Opin Chem Biol ; 76: 102351, 2023 10.
Article in English | MEDLINE | ID: mdl-37429085

ABSTRACT

Activity-based protein profiling (ABPP) is a powerful chemical approach for probing protein function and enzymatic activity in complex biological systems. This strategy typically utilizes activity-based probes that are designed to bind a specific protein, amino acid residue, or protein family and form a covalent bond through a reactivity-based warhead. Subsequent analysis by mass spectrometry-based proteomic platforms that involve either click chemistry or affinity-based labeling to enrich for the tagged proteins enables identification of protein function and enzymatic activity. ABPP has facilitated elucidation of biological processes in bacteria, discovery of new antibiotics, and characterization of host-microbe interactions within physiological contexts. This review will focus on recent advances and applications of ABPP in bacteria and complex microbial communities.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Proteome/metabolism , Proteomics , Bacteria/metabolism
9.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993486

ABSTRACT

The gut microbiome plays major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea, and acute renal failure (hemolytic uremic syndrome)4,5. Although gut microbes can provide colonization resistance by outcompeting some pathogens or modulating host defense provided by the gut barrier and intestinal immune cells, this phenomenon remains poorly understood. Emerging evidence suggests that small-molecule metabolites produced by the gut microbiota may mediate this process6. Here, we show that tryptophan (Trp)-derived metabolites produced by the gut bacteria protect the host against Citrobacter rodentium, a murine AE pathogen widely used as a model for EHEC infection7,8, by activation of the host neurotransmitter dopamine receptor D2 (DRD2) within the intestinal epithelium. We further find that these Trp metabolites act through DRD2 to decrease expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Previously identified mechanisms of colonization resistance either directly affect the pathogen by competitive exclusion or indirectly by modulation of host defense mechanisms9,10, so our results delineate a noncanonical colonization resistance pathway against AE pathogens featuring an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization within the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches for improving gut health and treating gastrointestinal infections, which afflict millions globally.

10.
Methods Enzymol ; 664: 85-102, 2022.
Article in English | MEDLINE | ID: mdl-35331380

ABSTRACT

Bile acids are important molecules that participate in digestion and regulate many host physiological processes, including metabolism and inflammation. Primary bile acids are biosynthesized from cholesterol in the liver, where they are conjugated to glycine and taurine before secretion into the intestines. A small fraction of these molecules remain in the gut, where they are modified by a microbial enzyme, bile salt hydrolase (BSH), which deconjugates the glycine and taurine groups. This deconjugation precedes all subsequent biotransformation in the intestines, including regioselective dehydroxylation and epimerization reactions, to produce numerous secondary bile acids. Thus, BSH is considered the gatekeeper enzyme of secondary bile acid metabolism, and, as a result, it controls the overall bile acid composition in the host. Despite the critical role that BSH plays in bile acid metabolism, there exist few tools to probe its activity in complex biological mixtures. In this chapter, we describe a chemoproteomic approach termed BSH-TRAP (bile salt hydrolase tagging and retrieval with activity-based probes) that enables visualization and identification of BSH activity in bacteria. Here, we describe application of BSH-TRAP to cultured bacterial strains and the gut microbes derived from mice. We envision that BSH-TRAP could be used to profile changes in BSH activity and identify novel BSH enzymes in complex biological samples, such as the gut microbiome.


Subject(s)
Amidohydrolases , Bile Acids and Salts , Amidohydrolases/metabolism , Animals , Bacteria/metabolism , Glycine , Mice , Taurine
11.
Clin Kidney J ; 14(12): 2524-2533, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950463

ABSTRACT

BACKGROUND: Models developed to predict hospital-acquired acute kidney injury (HA-AKI) in non-critically ill patients have a low sensitivity, do not include dynamic changes of risk factors and do not allow the establishment of a time relationship between exposure to risk factors and AKI. We developed and externally validated a predictive model of HA-AKI integrating electronic health databases and recording the exposure to risk factors prior to the detection of AKI. METHODS: The study set was 36 852 non-critically ill hospitalized patients admitted from January to December 2017. Using stepwise logistic analyses, including demography, chronic comorbidities and exposure to risk factors prior to AKI detection, we developed a multivariate model to predict HA-AKI. This model was then externally validated in 21 545 non-critical patients admitted to the validation centre in the period from June 2017 to December 2018. RESULTS: The incidence of AKI in the study set was 3.9%. Among chronic comorbidities, the highest odds ratios (ORs) were conferred by chronic kidney disease, urologic disease and liver disease. Among acute complications, the highest ORs were associated with acute respiratory failure, anaemia, systemic inflammatory response syndrome, circulatory shock and major surgery. The model showed an area under the curve (AUC) of 0.907 [95% confidence interval (CI) 0.902-0.908), a sensitivity of 82.7 (95% CI 80.7-84.6) and a specificity of 84.2 (95% CI 83.9-84.6) to predict HA-AKI, with an adequate goodness-of-fit for all risk categories (χ2 = 6.02, P = 0.64). In the validation set, the prevalence of AKI was 3.2%. The model showed an AUC of 0.905 (95% CI 0.904-0.910), a sensitivity of 81.2 (95% CI 79.2-83.1) and a specificity of 82.5 (95% CI 82.2-83) to predict HA-AKI and had an adequate goodness-of-fit for all risk categories (χ2 = 4.2, P = 0.83). An online tool (predaki.amalfianalytics.com) is available to calculate the risk of AKI in other hospital environments. CONCLUSIONS: By using electronic health data records, our study provides a model that can be used in clinical practice to obtain an accurate dynamic and updated assessment of the individual risk of HA-AKI during the hospital admission period in non-critically ill patients.

12.
Clin Kidney J ; 14(11): 2377-2382, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34754433

ABSTRACT

BACKGROUND: The Madrid Acute Kidney Injury Prediction Score (MAKIPS) is a recently described tool capable of performing automatic calculations of the risk of hospital-acquired acute kidney injury (HA-AKI) using data from from electronic clinical records that could be easily implemented in clinical practice. However, to date, it has not been externally validated. The aim of our study was to perform an external validation of the MAKIPS in a hospital with different characteristics and variable case mix. METHODS: This external validation cohort study of the MAKIPS was conducted in patients admitted to a single tertiary hospital between April 2018 and September 2019. Performance was assessed by discrimination using the area under the receiver operating characteristics curve and calibration plots. RESULTS: A total of 5.3% of the external validation cohort had HA-AKI. When compared with the MAKIPS cohort, the validation cohort showed a higher percentage of men as well as a higher prevalence of diabetes, hypertension, cardiovascular disease, cerebrovascular disease, anaemia, congestive heart failure, chronic pulmonary disease, connective tissue diseases and renal disease, whereas the prevalence of peptic ulcer disease, liver disease, malignancy, metastatic solid tumours and acquired immune deficiency syndrome was significantly lower. In the validation cohort, the MAKIPS showed an area under the curve of 0.798 (95% confidence interval 0.788-0.809). Calibration plots showed that there was a tendency for the MAKIPS to overestimate the risk of HA-AKI at probability rates ˂0.19 and to underestimate at probability rates between 0.22 and 0.67. CONCLUSIONS: The MAKIPS can be a useful tool, using data that are easily obtainable from electronic records, to predict the risk of HA-AKI in hospitals with different case mix characteristics.

13.
ACS Cent Sci ; 6(12): 2123-2125, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33376773
14.
J Am Chem Soc ; 142(42): 18103-18108, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32975936

ABSTRACT

T helper 17 (Th17) cells, an important subset of CD4+ T cells, help to eliminate extracellular infectious pathogens that have invaded our tissues. Despite the critical roles of Th17 cells in immunity, how the immune system regulates the production and maintenance of this cell type remains poorly understood. In particular, the plasticity of these cells or their dynamic ability to trans-differentiate into other CD4+ T cell subsets remains mostly uncharacterized. Here, we report a synthetic immunology approach using a photoactivatable immune modulator (PIM) to increase Th17 cell differentiation on demand with spatial and temporal precision to help elucidate this important and dynamic process. In this chemical strategy, we developed a latent agonist that upon photochemical activation releases a small-molecule ligand that targets the aryl hydrocarbon receptor (AhR) and ultimately induces Th17 cell differentiation. We used this chemical tool to control AhR activation with spatiotemporal precision within cells and to modulate Th17 cell differentiation on demand using UV light illumination. We envision that this approach will enable an understanding of the dynamic functions and behaviors of Th17 cells in vivo during immune responses and in mouse models of inflammatory disease.


Subject(s)
Carbazoles/pharmacology , Cell Engineering , Immunologic Factors/pharmacology , Basic Helix-Loop-Helix Transcription Factors/immunology , Carbazoles/chemical synthesis , Carbazoles/chemistry , Cell Differentiation/drug effects , Cell Differentiation/immunology , Humans , Immunologic Factors/chemical synthesis , Immunologic Factors/chemistry , Molecular Structure , Photochemical Processes , Receptors, Aryl Hydrocarbon/immunology , Th17 Cells
15.
Proc Natl Acad Sci U S A ; 117(32): 19376-19387, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32719140

ABSTRACT

Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are associated with dysbiosis of the gut microbiome. Emerging evidence suggests that small-molecule metabolites derived from bacterial breakdown of a variety of dietary nutrients confer a wide array of host benefits, including amelioration of inflammation in IBDs. Yet, in many cases, the molecular pathways targeted by these molecules remain unknown. Here, we describe roles for three metabolites-indole-3-ethanol, indole-3-pyruvate, and indole-3-aldehyde-which are derived from gut bacterial metabolism of the essential amino acid tryptophan, in regulating intestinal barrier function. We determined that these metabolites protect against increased gut permeability associated with a mouse model of colitis by maintaining the integrity of the apical junctional complex and its associated actin regulatory proteins, including myosin IIA and ezrin, and that these effects are dependent on the aryl hydrocarbon receptor. Our studies provide a deeper understanding of how gut microbial metabolites affect host defense mechanisms and identify candidate pathways for prophylactic and therapeutic treatments for IBDs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Caco-2 Cells , Colitis, Ulcerative/diet therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Humans , Inflammation , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Nonmuscle Myosin Type IIA/metabolism , Permeability , Receptors, Aryl Hydrocarbon/genetics , Tryptophan/administration & dosage
16.
ACS Chem Biol ; 15(5): 1119-1126, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31895538

ABSTRACT

The gut microbiome, the collection of 100 trillion microorganisms that resides in the intestinal lumen, plays major roles in modulating host physiology. One well-established function of the gut microbiota is that of colonization resistance or the ability of the microbial collective to protect the host against enteric pathogens. Although evidence suggests that these microbes may outcompete some pathogens, there remains a lack of mechanistic understanding that underlies this competitive exclusion. In recent years, there has been great interest in small-molecule metabolites that are produced by the gut microbiota and in understanding how these molecules regulate host-pathogen interactions. In this review, we briefly summarize these findings by focusing on several classes of metabolites that mediate this important process. Understanding these host-microbe interactions in the gut may lead to identification of potential candidates for the development of prophylactics and therapeutics for many infectious diseases that are impacted by the gut microbiome.


Subject(s)
Anti-Infective Agents/pharmacology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Amino Acids/chemistry , Amino Acids/metabolism , Drug Discovery , Drug Resistance, Microbial , Fatty Acids, Volatile/chemistry , Fatty Acids, Volatile/metabolism , Host-Pathogen Interactions , Humans , Metabolome , Tryptophan/chemistry , Tryptophan/metabolism
17.
ACS Cent Sci ; 5(5): 867-873, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31139722

ABSTRACT

The metagenome of the gut microbiome encodes tremendous potential for biosynthesizing and transforming small-molecule metabolites through the activities of enzymes expressed by intestinal bacteria. Accordingly, elucidating this metabolic network is critical for understanding how the gut microbiota contributes to health and disease. Bile acids, which are first biosynthesized in the liver, are modified in the gut by enzymes expressed by commensal bacteria into secondary bile acids, which regulate myriad host processes, including lipid metabolism, glucose metabolism, and immune homeostasis. The gateway reaction of secondary bile acid biosynthesis is mediated by bile salt hydrolases (BSHs), bacterial cysteine hydrolases whose action precedes other bile acid modifications within the gut. To assess how changes in bile acid metabolism mediated by certain intestinal microbiota impact gut physiology and pathobiology, methods are needed to directly examine the activities of BSHs because they are master regulators of intestinal bile acid metabolism. Here, we developed chemoproteomic tools to profile changes in gut microbiome-associated BSH activity. We showed that these probes can label active BSHs in model microorganisms, including relevant gut anaerobes, and in mouse gut microbiomes. Using these tools, we identified altered BSH activities in a murine model of inflammatory bowel disease, in this case, colitis induced by dextran sodium sulfate, leading to changes in bile acid metabolism that could impact host metabolism and immunity. Importantly, our findings reveal that alterations in BSH enzymatic activities within the gut microbiome do not correlate with changes in gene abundance as determined by metagenomic sequencing, highlighting the utility of chemoproteomic approaches for interrogating the metabolic activities of the gut microbiota.

18.
Trends Pharmacol Sci ; 40(6): 430-445, 2019 06.
Article in English | MEDLINE | ID: mdl-31079848

ABSTRACT

The human intestine harbors an immense, diverse, and critical population of bacteria that has effects on numerous aspects of host physiology, immunity, and disease. Emerging evidence suggests that many of the interactions between the host and the gut microbiota are mediated via the microbial metabolome, or the collection of small-molecule metabolites produced by intestinal bacteria. This review summarizes findings from recent work by focusing on different classes of metabolites produced by the gut microbiota and their effects in modulating host health and disease. These metabolites ultimately serve as a form of communication between the gut microbiome and the host, and a better understanding of this chemical language could potentially lead to novel strategies for treating a wide variety of human disorders.


Subject(s)
Gastrointestinal Microbiome/physiology , Host Microbial Interactions/physiology , Animals , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/physiology , Humans , Immune System/physiology , Metabolome
19.
ACS Cent Sci ; 4(8): 948-949, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30159390
20.
Chem Sci ; 8(2): 1450-1453, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28451285

ABSTRACT

The immune system is an essential component of host defense against pathogens and is largely mediated by inflammatory molecules produced by immune cells, such as macrophages. These inflammatory mediators are regulated at the transcriptional level by chromatin-modifying enzymes including histone deacetylases (HDACs). Here we describe a strategy to regulate inflammation and immunity with photocontrolled HDAC inhibitors, which can be selectively delivered to target cells by UV irradiation to minimize off-target effects. We strategically photocaged the active moiety of an HDAC inhibitor and showed that mild UV irradiation leads to the selective release of the inhibitor in a spatiotemporal manner. This methodology was used to decrease the amount of pro-inflammatory mediators produced by a subpopulation of macrophages. Our approach could ultimately be used to control inflammation in vivo as a therapeutic for inflammatory diseases, while minimizing off-target effects to healthy tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...