Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(25): 7616-7622, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38815153

ABSTRACT

Engineering the building blocks in metal-organic materials is an effective strategy for tuning their dynamical properties and can affect their response to external guest molecules. Tailoring the interaction and diffusion of molecules into these structures is highly important, particularly for applications related to gas separation. Herein, we report a vanadium-based hybrid ultramicroporous material, VOFFIVE-1-Ni, with temperature-dependent dynamical properties and a strong affinity to effectively capture and separate carbon dioxide (CO2) from methane (CH4). VOFFIVE-1-Ni exhibits a CO2 uptake of 12.08 wt % (2.75 mmol g-1), a negligible CH4 uptake at 293 K (0.5 bar), and an excellent CO2-over-CH4 uptake ratio of 2280, far exceeding that of similar materials. The material also exhibits a favorable CO2 enthalpy of adsorption below -50 kJ mol-1, as well as fast CO2 adsorption rates (90% uptake reached within 20 s) that render the hydrolytically stable VOFFIVE-1-Ni a promising sorbent for applications such as biogas upgrading.

2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768642

ABSTRACT

For the first time, the use of stannate-based sorbents was investigated as high temperature CO2 sorption to evaluate their potential to contribute towards reducing carbon emissions. The sorption capacity and kinetics of commercial tin oxide, sodium, potassium and calcium stannates and lab synthesised potassium stannates were tested using thermogravimetric analysis. Commercial K2SnO3 was found to possess the largest CO2 uptake capacity (2.77 mmol CO2/g or 12.2 wt%) at 700 °C, which is among the highest for potassium sorbents, but the CO2 desorption was not successful. On the contrary, the in-house synthesised K-stannate (K-B) using facile solid-state synthesis outperformed the other sorbents, resulting in a CO2 uptake of 7.3 wt% after 5 min, an adsorption rate (0.016 mg/s) one order of magnitude higher than the other stannates, and stability after 40 cycles. The XRD and XPS analyses showed that K-B contains a mixture of K2SnO3 (76%) and K4SnO4 (21%), while the Scherrer crystal sizes confirmed good resistance to sintering for the potassium stannates. Among the apparent kinetic model tested, the pseudo-second order model was the most suitable to predict the CO2 sorption process of K-B, indicating that chemical adsorption is dominant, while film-diffusion resistance and intra-particle diffusion resistance governed the sorption process in K-B. In summary, this work shows that solid-state synthesised potassium stannate could be an effective sorbent for high temperature separation, and additional work is required to further elucidate its potential.


Subject(s)
Carbon Dioxide , Potassium , Carbon Dioxide/chemistry , Temperature , Kinetics , Hot Temperature , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL