Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Int J Bioprint ; 9(2): 656, 2023.
Article in English | MEDLINE | ID: mdl-37065672

ABSTRACT

The printing accuracy of polymer melt electrowriting is adversely affected by the residual charge entrapped within the fibers, especially for three-dimensional (3D) structured materials or multilayered scaffolds with small interfiber distances. To clarify this effect, an analytical charge-based model is proposed herein. The electric potential energy of the jet segment is calculated considering the amount and distribution of the residual charge in the jet segment and the deposited fibers. As the jet deposition proceeds, the energy surface assumes different patterns, which constitute different modes of evolution. The manner in which the various identified parameters affect the mode of evolution are represented by three charge effects, including the global, local, and polarization effect. Based on these representations, typical modes of energy surface evolution are identified. Moreover, the lateral characteristic curve and characteristic surface are advanced to analyze the complex interplay between fiber morphologies and residual charge. Different parameters contribute to this interplay either by affecting residual charge, fiber morphologies, or the three charge effects. To validate this model, the effects of lateral location and grid number (i.e., number of fibers printed in each direction) on the fiber morphologies are investigated. Moreover, the "fiber bridging" phenomenon in parallel fiber printing is successfully explained. These results help to comprehensively understand the complex interplay between the fiber morphologies and the residual charge, thus furnishing a systematic workflow to improve printing accuracy.

2.
Sci Rep ; 12(1): 3364, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233043

ABSTRACT

The application of microfluidics technology in additive manufacturing is an emerging approach that makes possible the fabrication of functional three-dimensional cell-laden structured biomaterials. A key challenge that needs to be addressed using a microfluidic-based printhead (MBP) is increasing the controllability over the properties of the fabricated microtissue. Herein, an MBP platform is numerically simulated for the fabrication of solid and hollow microfibers using a microfluidic channel system with high level of controllability over the microfiber geometrical outcomes. Specifically, the generation of microfibers is enabled by studying the effects of microfluidic-based bioprinting parameters that capture the different range of design, bioink material, and process parameter dependencies as numerically modeled as a multiphysics problem. Furthermore, the numerical model is verified and validated, exhibiting good agreement with literature-derived experimental data in terms of microfiber geometrical outcomes. Additionally, a predictive mathematical formula that correlates the dimensionless process parameters with dimensionless geometrical outcomes is presented to calculate the geometrical outcomes of the microfibers. This formula is expected to be applicable for bioinks within a prescribed range of the density and viscosity value. The MBP applications are highlighted towards precision fabrication of heterogeneous microstructures with functionally graded properties to be used in organ generation, disease modeling, and drug testing studies.


Subject(s)
Bioprinting , Bioprinting/methods , Microfluidics , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
3.
Sci Rep ; 9(1): 18854, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827129

ABSTRACT

Bioprinting is an emerging and promising technique for fabricating 3D cell-laden constructs for various biomedical applications. In this paper, we employed 3D bioprinted GelMA-based models to investigate the trophoblast cell invasion phenomenon, enabling studies of key placental functions. Initially, a set of optimized material and process parameters including GelMA concentration, UV crosslinking time and printing configuration were identified by systematic, parametric study. Following this, a multiple-ring model (2D multi-ring model) was tested with the HTR-8/SVneo trophoblast cell line to measure cell movement under the influence of EGF (chemoattractant) gradients. In the multi-ring model, the cell front used as a cell invasion indicator moves at a rate of 85 ± 33 µm/day with an EGF gradient of 16 µM. However, the rate was dramatically reduced to 13 ± 5 µm/day, when the multi-ring model was covered with a GelMA layer to constrain cells within the 3D environment (3D multi-ring model). Due to the geometric and the functional limitations of multi-ring model, a multi-strip model (2D multi-strip model) was developed to investigate cell movement in the presence and absence of the EGF chemoattractant. The results show that in the absence of an overlying cell-free layer of GelMA, movement of the cell front shows no significant differences between control and EGF-stimulated rates, due to the combination of migration and proliferation at high cell density (6 × 106 cells/ml) near the GelMA surface. When the model was covered by a layer of GelMA (3D multi-strip model) and migration was excluded, EGF-stimulated cells showed an invasion rate of 21 ± 3 µm/day compared to the rate for unstimulated cells, of 5 ± 4 µm/day. The novel features described in this report advance the use of the 3D bioprinted placental model as a practical tool for not only measurement of trophoblast invasion but also the interaction of invading cells with other tissue elements.


Subject(s)
Bioprinting , Cell Movement , Models, Biological , Trophoblasts/physiology , Cell Line , Gelatin , Humans , Hydrogels , Printing, Three-Dimensional
4.
Microsyst Nanoeng ; 5: 15, 2019.
Article in English | MEDLINE | ID: mdl-31057942

ABSTRACT

Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cell's operating length scales (10-100 µm). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, "non-woven" vs. precision-stacked, "woven"). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturing-metrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level.

5.
ACS Appl Bio Mater ; 1(5): 1448-1457, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-34996249

ABSTRACT

This article presents the effect of transition metal dichalcogenide (TMD) surfaces and their geometric arrangements on resulting cellular morphology and adhesion. WS2 and MoS2 on SiO2 and polydimethylsiloxane (PDMS) substrates were utilized as cell culture platforms, and cell-substrate interactions were probed via analysis of cellular morphometric features (i.e., cell area and circularity) of neonatal human dermal fibroblasts (NHDFs) and metrology of TMD surfaces. It was quantitatively confirmed that the presence of TMDs on substrates resulted in an overall enhanced cellular morphology, even on SiO2 substrates adverse to cellular adhesion. On a localized scale, distinct TMD geometric features at sites of adhesion were measured and correlated with the observed cell morphology. Geometric parameters of TMDs, including TMD island count and total TMD area, exhibited positive correlations with the resulting morphology of cells by enhancing cellular areas and elongations. Further, geometric properties were compared to cell area per TMD island, and positive correlations were observed with TMD island size parameters. Cells adhered at heterogeneous locations with combinations of exposed TMD and SiO2, demonstrating an enhanced morphology in relation to the number of TMD islands in a cell's local area and the geometric size parameters of TMD islands within the cell's operating length scale. The proposed mechanisms of cellular adhesion on TMD-modified surfaces are attributed to the role of surface properties (e.g., stiffness, friction, and hydrophobicity) of TMD and underlying SiO2 and their combined effects during progressive stages of cellular adhesion. These findings provide insight toward possibilities of tailoring adhesion of cells guided by geometric parameters of TMDs.

6.
Biotechnol Bioeng ; 113(3): 612-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26332859

ABSTRACT

The dynamic nature of in vitro drug metabolism models demands reliable numerical tools to determine key design parameter values towards high-fidelity cell-based platforms of in vivo drug metabolism. This paper represents the first of a two-part model-based investigation of a 3D dynamic microorgan device (DMD). The prescribed tissue model in this paper is precisely embedded within a DMD by 3D bioprinting hydrogel encapsulated liver cells into a patterned array of microchannels. A perfusing drug substrate is biotransformed by liver cells encapsulated within porous hydrogel walls. Therefore, the free and porous flow regime equations are first solved in tandem to derive the laminar velocity profile and wall shear stresses in the entire shear-mediated flow regime. These equations are then coupled with a convection-diffusion equation and Michaelis-Menten reaction terms, resulting in an effective convection-diffusion-cell kinetics model. A key consideration addressed herein is mechanotransduction where shear stresses on the encapsulated cells alter subcellular liver enzyme reaction rates. Cells are incorporated into the geometric model implicitly (macroscale) as enzyme reaction structures uniformly distributed throughout the DMD length. Transient simulations enable effluent drug metabolite profile determination wherein the proposed macroscale modeling approach is validated with an experimental drug flow study.


Subject(s)
Drug Evaluation, Preclinical/methods , Liver/drug effects , Liver/metabolism , Organ Culture Techniques/methods , Hep G2 Cells , Humans , Models, Biological
7.
Biotechnol Bioeng ; 113(3): 623-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26333066

ABSTRACT

The authors have previously reported a rigorous macroscale modeling approach for an in vitro 3D dynamic microorgan device (DMD). This paper represents the second of a two-part model-based investigation where the effect of microscale (single liver cell-level) shear-mediated mechanotransduction on drug biotransformation is deconstructed. Herein, each cell is explicitly incorporated into the geometric model as single compartmentalized metabolic structures. Each cell's metabolic activity is coupled with the microscale hydrodynamic Wall Shear Stress (WSS) simulated around the cell boundary through a semi-empirical polynomial function as an additional reaction term in the mass transfer equations. Guided by the macroscale model-based hydrodynamics, only 9 cells in 3 representative DMD domains are explicitly modeled. Dynamic and reaction similarity rules based on non-dimensionalization are invoked to correlate the numerical and empirical models, accounting for the substrate time scales. The proposed modeling approach addresses the key challenge of computational cost towards modeling complex large-scale DMD-type system with prohibitively high cell densities. Transient simulations are implemented to extract the drug metabolite profile with the microscale modeling approach validated with an experimental drug flow study. The results from the author's study demonstrate the preferred implementation of the microscale modeling approach over that of its macroscale counterpart.


Subject(s)
Drug Evaluation, Preclinical/methods , Liver/drug effects , Liver/metabolism , Organ Culture Techniques/methods , Hep G2 Cells , Humans , Models, Biological
8.
Biomed Opt Express ; 3(6): 1326-39, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22741079

ABSTRACT

We report on a novel fabrication approach to build multilayered optical tissue phantoms that serve as independently validated test targets for axial resolution and contrast in scattering measurements by depth-resolving optical coherent tomography (OCT) with general applicability to a variety of three-dimensional optical sectioning platforms. We implement a combinatorial bottom-up approach to prepare monolayers of light-scattering microspheres with interspersed layers of transparent polymer. A dense monolayer assembly of monodispersed microspheres is achieved via a combined methodology of polyelectrolyte multilayers (PEMs) for particle-substrate binding and convective particle flux for two-dimensional crystal array formation on a glass substrate. Modifications of key parameters in the layer-by-layer polyelectrolyte deposition approach are applied to optimize particle monolayer transfer from a glass substrate into an elastomer while preserving the relative axial positioning in the particle monolayer. Varying the dimensions of the scattering microspheres and the thickness of the intervening transparent polymer layers enables different spatial frequencies to be realized in the transverse dimension of the solid phantoms. Step-wise determination of the phantom dimensions is performed independently of the optical system under test to enable precise spatial calibration, independent validation, and quantitative dimensional measurements.

9.
Methods Mol Biol ; 671: 219-38, 2011.
Article in English | MEDLINE | ID: mdl-20967633

ABSTRACT

In their normal in vivo matrix milieu, tissues assume complex well-organized 3D architectures. Therefore, a primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario, in which the precise configuration and composition of cells and bioactive matrix components can establish the well-defined biomimetic microenvironments that promote cell-cell and cell-matrix interactions. With the advent and refinements in microfabricated systems which can present physical and chemical cues to cells in a controllable and reproducible fashion unrealizable with conventional tissue culture, high-fidelity, high-throughput in vitro models are achieved. The convergence of solid freeform fabrication (SFF) technologies, namely microprinting, along with microfabrication techniques, a 3D microprinted micro-organ, can serve as an in vitro platform for cell culture, drug screening, or to elicit further biological insights. This chapter firstly details the principles, methods, and applications that undergird the fabrication process development and adaptation of microfluidic devices for the creation of a drug screening model. This model involves the combinatorial setup of an automated syringe-based, layered direct cell writing microprinting process with soft lithographic micropatterning techniques to fabricate a microscale in vitro device housing a chamber of microprinted 3D micro-organ that biomimics the cell's natural microenvironment for enhanced performance and functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, 3D cell-encapsulated hydrogel-based tissue constructs are microprinted reproducibly in defined design patterns and biologically characterized for both viability and cell-specific function. Another key facet of the in vivo microenvironment that is recapitulated with the in vitro system is the necessary dynamic perfusion of the 3D microscale liver analog with cells probed for their collective drug metabolic function and suitability as a drug metabolism model.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Hepatocytes/metabolism , Microfluidic Analytical Techniques/instrumentation , Microtechnology/methods , Pharmaceutical Preparations/metabolism , Tissue Array Analysis/instrumentation , Animals , Cell Line , Cell Survival , Drug Evaluation, Preclinical/methods , Equipment Design , Hepatocytes/cytology , Humans , Microfluidic Analytical Techniques/methods , Tissue Array Analysis/methods
10.
Gynecol Oncol ; 87(1): 152-4, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12468359

ABSTRACT

BACKGROUND: Inguinal serous carcinoma arising from endometriosis is an unusual cancer. It is uncertain how patients with these tumors should be managed, especially those patients who desire future fertility. CASE: We present a 34-year-old woman with a right groin mass with cyclical pain. Resection of this mass revealed complex atypical hyperplasia, well-differentiated endometrioid adenocarcinoma, and serous carcinoma within a focus of endometriosis. The patient desired to maintain her fertility and was treated conservatively. She is currently 3 years free of disease after diagnosis. She also had one successful pregnancy. CONCLUSION: This is a rare case of carcinoma arising from endometriosis. The long-term prognosis for this patient remains unclear and the patient will require long-term follow-up.


Subject(s)
Cystadenocarcinoma, Serous/etiology , Endometrial Neoplasms/etiology , Endometriosis/complications , Adult , Carcinoma, Endometrioid/etiology , Carcinoma, Endometrioid/pathology , Cystadenocarcinoma, Serous/pathology , Endometrial Neoplasms/pathology , Endometriosis/pathology , Female , Humans , Inguinal Canal/pathology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL