Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 20(1): 265, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968737

ABSTRACT

BACKGROUND: Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS: RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS: Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS: Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.


Subject(s)
Brain , Microglia , Mice , Animals , Brain/blood supply , Erythrocytes , Cerebral Hemorrhage , Endothelium
2.
J Neuroinflammation ; 20(1): 51, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841828

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is increasingly recognized as a stroke risk factor, but its exact relationship with cerebrovascular disease is not well-understood. We investigated the development of cerebral small vessel disease using in vivo and in vitro models of CKD. METHODS: CKD was produced in aged C57BL/6J mice using an adenine-induced tubulointerstitial nephritis model. We analyzed brain histology using Prussian blue staining to examine formation of cerebral microhemorrhage (CMH), the hemorrhagic component of small vessel disease and the neuropathological substrate of MRI-demonstrable cerebral microbleeds. In cell culture studies, we examined effects of serum from healthy or CKD patients and gut-derived uremic toxins on brain microvascular endothelial barrier. RESULTS: CKD was induced in aged C57BL/6J mice with significant increases in both serum creatinine and cystatin C levels (p < 0.0001) without elevation of systolic or diastolic blood pressure. CMH was significantly increased and positively correlated with serum creatinine level (Spearman r = 0.37, p < 0.01). Moreover, CKD significantly increased Iba-1-positive immunoreactivity by 51% (p < 0.001), induced a phenotypic switch from resting to activated microglia, and enhanced fibrinogen extravasation across the blood-brain barrier (BBB) by 34% (p < 0.05). On analysis stratified by sex, the increase in CMH number was more pronounced in male mice and this correlated with greater creatinine elevation in male compared with female mice. Microglial depletion with PLX3397 diet significantly decreased CMH formation in CKD mice without affecting serum creatinine levels. Incubation of CKD serum significantly reduced transendothelial electrical resistance (TEER) (p < 0.01) and increased sodium fluorescein permeability (p < 0.05) across the endothelial monolayer. Uremic toxins (i.e., indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N-oxide) in combination with urea and lipopolysaccharide induced a marked drop in TEER compared with the control group (p < 0.0001). CONCLUSIONS: CKD promotes the development of CMH in aged mice independent of blood pressure but directly proportional to the degree of renal impairment. These effects of CKD are likely mediated in part by microglia and are associated with BBB impairment. The latter is likely related to gut-derived bacteria-dependent toxins classically associated with CKD. Overall, these findings demonstrate an important role of CKD in the development of cerebral small vessel disease.


Subject(s)
Intracranial Hemorrhages , Renal Insufficiency, Chronic , Uremic Toxins , Animals , Female , Male , Mice , Brain , Creatinine/adverse effects , Mice, Inbred C57BL
3.
Methods Mol Biol ; 2616: 181-190, 2023.
Article in English | MEDLINE | ID: mdl-36715935

ABSTRACT

Cerebral microhemorrhages are microscopic bleeds in the brain parenchyma and are the pathological substrates of cerebral microbleeds. Clinically and in mouse models, detection of cerebral microhemorrhages involves the use of magnetic resonance imaging and/or postmortem neuropathology techniques including hematoxylin and eosin (H & E) staining to detect extravasated red blood cells and fresh/acute microhemorrhages and Prussian blue staining to detect iron released from extravasated red blood cells and subacute/old microhemorrhages. Here we describe the step-by-step procedure for mouse brain processing and H & E and Prussian blue staining and quantification of acute (H & E-positive) and subacute (Prussian blue-positive) cerebral microhemorrhages in mouse brain tissues.


Subject(s)
Brain , Cerebral Hemorrhage , Mice , Animals , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Brain/pathology , Ferrocyanides , Iron , Eosine Yellowish-(YS) , Magnetic Resonance Imaging/methods
4.
Front Physiol ; 13: 930402, 2022.
Article in English | MEDLINE | ID: mdl-36187787

ABSTRACT

Heavy alcohol consumption is a known risk factor for various forms of dementia and the development of Alzheimer's disease (AD). In this work, we investigated how intragastric alcohol feeding may alter the liver-to-brain axis to induce and/or promote AD pathology. Four weeks of intragastric alcohol feeding to mice, which causes significant fatty liver (steatosis) and liver injury, caused no changes in AD pathology markers in the brain [amyloid precursor protein (APP), presenilin], except for a decrease in microglial cell number in the cortex of the brain. Interestingly, the decline in microglial numbers correlated with serum alanine transaminase (ALT) levels, suggesting a potential link between liver injury and microglial loss in the brain. Intragastric alcohol feeding significantly affected two hepatic proteins important in amyloid-beta (Aß) processing by the liver: 1) alcohol feeding downregulated lipoprotein receptor-related protein 1 (LRP1, ∼46%), the major receptor in the liver that removes Aß from blood and peripheral organs, and 2) alcohol significantly upregulated APP (∼2-fold), a potentially important source of Aß in the periphery and brain. The decrease in hepatic LRP1 and increase in hepatic APP likely switches the liver from being a remover or low producer of Aß to an important source of Aß in the periphery, which can impact the brain. The downregulation of LRP1 and upregulation of APP in the liver was observed in the first week of intragastric alcohol feeding, and also occurred in other alcohol feeding models (NIAAA binge alcohol model and intragastric alcohol feeding to rats). Modulation of hepatic LRP1 and APP does not seem alcohol-specific, as ob/ob mice with significant steatosis also had declines in LRP1 and increases in APP expression in the liver. These findings suggest that liver steatosis rather than alcohol-induced liver injury is likely responsible for regulation of hepatic LRP1 and APP. Both obesity and alcohol intake have been linked to AD and our data suggests that liver steatosis associated with these two conditions modulates hepatic LRP1 and APP to disrupt Aß processing by the liver to promote AD.

5.
J Neuroinflammation ; 18(1): 312, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34972522

ABSTRACT

BACKGROUND: Tumor necrosis factor-α (TNF-α) plays a central role in Alzheimer's disease (AD) pathology, making biologic TNF-α inhibitors (TNFIs), including etanercept, viable therapeutics for AD. The protective effects of biologic TNFIs on AD hallmark pathology (Aß deposition and tau pathology) have been demonstrated. However, the effects of biologic TNFIs on Aß-independent tau pathology have not been reported. Existing biologic TNFIs do not cross the blood-brain barrier (BBB), therefore we engineered a BBB-penetrating biologic TNFI by fusing the extracellular domain of the type-II human TNF-α receptor (TNFR) to a transferrin receptor antibody (TfRMAb) that ferries the TNFR into the brain via receptor-mediated transcytosis. The present study aimed to investigate the effects of TfRMAb-TNFR (BBB-penetrating TNFI) and etanercept (non-BBB-penetrating TNFI) in the PS19 transgenic mouse model of tauopathy. METHODS: Six-month-old male and female PS19 mice were injected intraperitoneally with saline (n = 12), TfRMAb-TNFR (1.75 mg/kg, n = 10) or etanercept (0.875 mg/kg, equimolar dose of TNFR, n = 10) 3 days/week for 8 weeks. Age-matched littermate wild-type mice served as additional controls. Blood was collected at baseline and 8 weeks for a complete blood count. Locomotion hyperactivity was assessed by the open-field paradigm. Brains were examined for phosphorylated tau lesions (Ser202, Thr205), microgliosis, and neuronal health. The plasma pharmacokinetics were evaluated following a single intraperitoneal injection of 0.875 mg/kg etanercept or 1.75 mg/kg TfRMAb-TNFR or 1.75 mg/kg chronic TfRMAb-TNFR dosing for 4 weeks. RESULTS: Etanercept significantly reduced phosphorylated tau and microgliosis in the PS19 mouse brains of both sexes, while TfRMAb-TNFR significantly reduced these parameters in the female PS19 mice. Both TfRMAb-TNFR and etanercept treatment improved neuronal health by significantly increasing PSD95 expression and attenuating hippocampal neuron loss in the PS19 mice. The locomotion hyperactivity in the male PS19 mice was suppressed by chronic etanercept treatment. Equimolar dosing resulted in eightfold lower plasma exposure of the TfRMAb-TNFR compared with etanercept. The hematological profiles remained largely stable following chronic biologic TNFI dosing except for a significant increase in platelets with etanercept. CONCLUSION: Both TfRMAb-TNFR (BBB-penetrating) and non-BBB-penetrating (etanercept) biologic TNFIs showed therapeutic effects in the PS19 mouse model of tauopathy.


Subject(s)
Gliosis/prevention & control , Neurons/pathology , Tauopathies/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , tau Proteins/antagonists & inhibitors , Animals , Disks Large Homolog 4 Protein/biosynthesis , Disks Large Homolog 4 Protein/genetics , Etanercept/pharmacokinetics , Etanercept/pharmacology , Female , Hippocampus/pathology , Humans , Hyperkinesis , Male , Mice , Mice, Transgenic , Phosphorylation , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism
7.
Front Cell Neurosci ; 12: 279, 2018.
Article in English | MEDLINE | ID: mdl-30237761

ABSTRACT

Peripheral endothelial cells are capable of erythrophagocytosis, but data on brain endothelial erythrophagocytosis are limited. We studied the relationship between brain endothelial erythrophagocytosis and cerebral microhemorrhage, the pathological substrate of MRI-demonstrable cerebral microbleeds. To demonstrate the erythrophagocytic capability of the brain endothelium, we studied the interactions between brain endothelial cells and red blood cells exposed to oxidative stress in vitro, and developed a new in vitro cerebral microbleeds model to study the subsequent passage of hemoglobin across the brain endothelial monolayer. Using multiple approaches, our results show marked brain endothelial erythrophagocytosis of red blood cells exposed to oxidative stress compared with control red blood cells in vitro. This brain endothelial erythrophagocytosis was accompanied by passage of hemoglobin across the brain endothelial monolayer with unaltered monolayer integrity. In vivo and confocal fluorescence microscopy studies confirmed the extravasation of RBC exposed to oxidative stress across brain endothelium. These findings, demonstrating erythrophagocytosis mediated by the brain endothelial monolayer and the subsequent passage of iron-rich hemoglobin in vitro and RBC in vivo, may have implications for elucidating mechanisms involved in the development of cerebral microbleeds that are not dependent on disruption of the microvasculature.

8.
Mol Pharm ; 15(11): 4963-4973, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30252487

ABSTRACT

Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has neuroprotective effects in rodent models of Alzheimer's disease (AD). However, high therapeutic doses or invasive routes of administration of EPO are required to achieve effective brain concentrations due to low blood-brain barrier (BBB) penetrability, and high EPO doses result in hematopoietic side effects. These obstacles can be overcome by engineering a BBB-penetrable analog of EPO, which is rapidly cleared from the blood, by fusing EPO to a chimeric monoclonal antibody targeting the transferrin receptor (cTfRMAb), which acts as a molecular Trojan horse to ferry the EPO into the brain via the transvascular route. In the current study, we investigated the effects of the BBB-penetrable analog of EPO on AD pathology in a double transgenic mouse model of AD. Five and a half month old male APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with saline ( n = 10) or the BBB-penetrable EPO ( n = 10) 3 days/week intraperitoneally for 8 weeks, compared to same-aged C57BL/6J wild-type mice treated with saline ( n = 8) with identical regiment. At 9 weeks following treatment initiation, exploration and spatial memory were assessed with the open-field and Y-maze test, mice were sacrificed, and brains were evaluated for Aß peptide load, synaptic loss, BBB disruption, microglial activation, and microhemorrhages. APP/PS1 mice treated with the BBB-penetrable cTfRMAb-EPO fusion protein had significantly lower cortical and hippocampal Aß peptide number ( p < 0.05) and immune-positive area ( p < 0.05), a decrease in hippocampal synaptic loss ( p < 0.05) and cortical microglial activation ( p < 0.001), and improved spatial memory ( p < 0.05) compared with APP/PS1 saline controls. BBB-penetrating EPO was not associated with microhemorrhage development. The cTfRMAb-EPO fusion protein offers therapeutic benefits by targeting multiple targets of AD pathogenesis and progression (Aß load, synaptic loss, microglial activation) and improving spatial memory in the APP/PS1 mouse model of AD.


Subject(s)
Alzheimer Disease/drug therapy , Erythropoietin/administration & dosage , Immunoconjugates/administration & dosage , Receptors, Transferrin/immunology , Recombinant Fusion Proteins/administration & dosage , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , CHO Cells , Cricetulus , Disease Models, Animal , Erythropoietin/genetics , Erythropoietin/pharmacokinetics , Humans , Immunoconjugates/genetics , Immunoconjugates/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Permeability , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Treatment Outcome
9.
J Cent Nerv Syst Dis ; 9: 1179573517709278, 2017.
Article in English | MEDLINE | ID: mdl-28579870

ABSTRACT

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer's disease (AD). Food and Drug Administration-approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.

10.
Mol Pharm ; 14(7): 2340-2349, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28514851

ABSTRACT

Tumor necrosis factor alpha (TNF-α) driven processes are involved at multiple stages of Alzheimer's disease (AD) pathophysiology and disease progression. Biologic TNF-α inhibitors (TNFIs) are the most potent class of TNFIs but cannot be developed for AD since these macromolecules do not cross the blood-brain barrier (BBB). A BBB-penetrating TNFI was engineered by the fusion of the extracellular domain of the type II human TNF receptor (TNFR) to a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated as the cTfRMAb-TNFR fusion protein. The cTfRMAb domain functions as a molecular Trojan horse, binding to the mouse TfR and ferrying the biologic TNFI across the BBB via receptor-mediated transcytosis. The aim of the study was to examine the effect of this BBB-penetrating biologic TNFI in a mouse model of AD. Six-month-old APPswe, PSEN 1dE9 (APP/PS1) transgenic mice were treated with saline (n = 13), the cTfRMAb-TNFR fusion protein (n = 12), or etanercept (non-BBB-penetrating biologic TNFI; n = 11) 3 days per week intraperitoneally. After 12 weeks of treatment, recognition memory was assessed using the novel object recognition task, mice were sacrificed, and brains were assessed for amyloid beta (Aß) load, neuroinflammation, BBB damage, and cerebral microhemorrhages. The cTfRMAb-TNFR fusion protein caused a significant reduction in brain Aß burden (both Aß peptide and plaque), neuroinflammatory marker ICAM-1, and a BBB disruption marker, parenchymal IgG, and improved recognition memory in the APP/PS1 mice. Fusion protein treatment resulted in low antidrug-antibody formation with no signs of either immune reaction or cerebral microhemorrhage development with chronic 12-week treatment. Chronic treatment with the cTfRMAb-TNFR fusion protein, a BBB-penetrating biologic TNFI, offers therapeutic benefits by targeting Aß pathology, neuroinflammation, and BBB-disruption, overall improving recognition memory in a transgenic mouse model of AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Antibodies, Monoclonal/therapeutic use , Blood-Brain Barrier/metabolism , Receptors, Transferrin/antagonists & inhibitors , Recombinant Fusion Proteins/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Cryoultramicrotomy , Enzyme-Linked Immunosorbent Assay , Humans , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...