Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(33): e2303696120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549266

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Receptors, Glucagon , Cryoelectron Microscopy , Glucagon-Like Peptide-1 Receptor/agonists , Ligands , Lipids , Peptides/chemistry , Receptors, Glucagon/agonists
2.
Acta Pharmacol Sin ; 44(2): 421-433, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35953646

ABSTRACT

The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Mutagenesis, Site-Directed , Peptides/chemistry , Receptors, Glucagon/genetics , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Signal Transduction , Transcription Factors
3.
Biochem Pharmacol ; 180: 114150, 2020 10.
Article in English | MEDLINE | ID: mdl-32682761

ABSTRACT

Metabolic diseases such as obesity, diabetes, and their comorbidities have converged as one of the most serious health concerns on a global scale. Selective glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists are one of the major therapeutics for type 2 diabetes and obesity. Polypharmacological approaches that enable modulation of multiple metabolic targets in a single drug have emerged as a potential avenue to improve therapeutic outcomes. Among numerous peptides under development are those targeting the GLP-1R and either the glucagon receptor (GCGR), glucose-dependent insulinotropic peptide receptor (GIPR) or all 3 receptors, as dual- or tri- peptide agonists. Despite many of them entering into clinical trials, current development has been based on only a limited understanding of the spectrum of potential pharmacological properties of these ligands beyond binding selectivity. In the present study, we examined the potential for agonists that target both GLP-1R and GCGR to exhibit biased agonism, comparing activity across proximal activation of Gs protein, cAMP accumulation, pERK1/2 and ß-arrestin recruitment. Three distinct dual agonists that have different relative cAMP production potency for GLP-1R versus GCGR, "peptide 15", MEDI0382 and SAR425899, and one triagonist of the GLP-1R, GCGR and GIPR were examined. We demonstrated that all novel peptides have distinct biased agonism profiles relative to either of the cognate agonists of the receptors, and to each other. This is an important feature of the pharmacology of this drug class that needs to be considered alongside selectivity, bioavailability and pharmacokinetics for rational optimization of new therapeutics.


Subject(s)
Glucagon-Like Peptide 1/agonists , Oxyntomodulin/pharmacology , Peptides/pharmacology , Receptors, Glucagon/agonists , Amino Acid Sequence , Dose-Response Relationship, Drug , Drug Agonism , Glucagon-Like Peptide 1/metabolism , HEK293 Cells , Humans , Oxyntomodulin/genetics , Oxyntomodulin/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peptides/genetics , Peptides/metabolism , Protein Binding , Receptors, Glucagon/metabolism
4.
J Biol Chem ; 295(28): 9313-9325, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32371397

ABSTRACT

Unimolecular dual agonists of the glucagon (GCG) receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) are a new class of drugs that are potentially superior to GLP-1R-specific agonists for the management of metabolic disease. The dual-agonist, peptide 15 (P15), is a glutamic acid 16 analog of GCG with GLP-1 peptide substitutions between amino acids 17 and 24 that has potency equivalent to those of the cognate peptide agonists at the GCGR and GLP-1R. Here, we have used cryo-EM to solve the structure of an active P15-GCGR-Gs complex and compared this structure to our recently published structure of the GCGR-Gs complex bound to GCG. This comparison revealed that P15 has a reduced interaction with the first extracellular loop (ECL1) and the top of transmembrane segment 1 (TM1) such that there is increased mobility of the GCGR extracellular domain and at the C terminus of the peptide compared with the GCG-bound receptor. We also observed a distinct conformation of ECL3 and could infer increased mobility of the far N-terminal His-1 residue in the P15-bound structure. These regions of conformational variance in the two peptide-bound GCGR structures were also regions that were distinct between GCGR structures and previously published peptide-bound structures of the GLP-1R, suggesting that greater conformational dynamics may contribute to the increased efficacy of P15 in activation of the GLP-1R compared with GCG. The variable domains in this receptor have previously been implicated in biased agonism at the GLP-1R and could result in altered signaling of P15 at the GCGR compared with GCG.


Subject(s)
Cryoelectron Microscopy , Peptides/chemistry , Receptors, Glucagon , Animals , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/chemistry , Glucagon-Like Peptide-1 Receptor/ultrastructure , Humans , Protein Domains , Protein Structure, Quaternary , Receptors, Glucagon/agonists , Receptors, Glucagon/chemistry , Receptors, Glucagon/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...