Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 355: 114548, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38761872

ABSTRACT

Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.


Subject(s)
Ecdysteroids , Molting , Animals , Molting/genetics , Ecdysteroids/metabolism , Ecdysteroids/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Ecdysterone/metabolism , Brachyura/genetics , Brachyura/metabolism , Brachyura/growth & development , Endocrine Glands/metabolism
2.
Gen Comp Endocrinol ; 340: 114304, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37127083

ABSTRACT

A pair of Y-organs (YOs) synthesize ecdysteroids that initiate and coordinate molting processes in decapod crustaceans. The YO converts cholesterol to secreted products through a biosynthetic pathway involving a Rieske oxygenase encoded by Neverland (Nvd) and cytochrome P450 monooxygenases encoded by Halloween genes Spook (Spo; Cyp307a1), Phantom (Phm; Cyp306a1), Disembodied (Dib; Cyp302a1), and Shadow (Sad; Cyp315a1). NAD kinase (NADK) and 5-aminolevulinic acid synthase (ALAS) support ecdysteroid synthesis in insects. A 20-hydroxylase, encoded by Shed in decapods and Shade in insects, converts ecdysone to the active hormone 20-hydroxyecdysone (20E). 20E is inactivated by cytochrome P450 26-hydroxylase (Cyp18a1). Contigs encoding these eight proteins were extracted from a Gecarcinus lateralis YO transcriptome and their expression was quantified by quantitative polymerase chain reaction. mRNA levels of Gl-Spo and Gl-Phm were four orders of magnitude higher in YO than those in nine other tissues, while mRNA levels of Gl-NADK and Gl-ALAS were similar in all ten tissues. In G. lateralis induced to molt by multiple leg autotomy, YO mRNA levels of Gl-Nvd, Gl-Spo, Gl-Phm, Gl-NADK, and Gl-ALAS were highest in intermolt and premolt stages and lower in postmolt. Gl-Dib mRNA level was not affected by molt stage. mRNA level of Gl-Sad, which converts 2-deoxyecdysone to ecdysone, was higher in mid- and late premolt stages, when YO ecdysteroidogenic capacity is greatest. Gl-Cyp18a1 mRNA level was highest in intermolt, decreased in premolt stages, and was lowest in postmolt. In animals induced to molt by eyestalk ablation, YO mRNA levels of all eight genes were not correlated with increased hemolymph 20E titers. These results suggest that YO ecdysteroidogenic genes are differentially regulated at transcriptional and translational levels.


Subject(s)
Brachyura , Animals , Brachyura/genetics , Brachyura/metabolism , Signal Transduction/genetics , Ecdysteroids/metabolism , Molting/genetics , Ecdysone , RNA, Messenger/metabolism
3.
Article in English | MEDLINE | ID: mdl-27040186

ABSTRACT

Molting in decapod crustaceans is controlled by molt-inhibiting hormone (MIH), an eyestalk neuropeptide that suppresses production of ecdysteroids by a pair of molting glands (Y-organs or YOs). Eyestalk ablation (ESA) activates the YOs, which hypertrophy and increase ecdysteroid secretion. At mid premolt, which occurs 7-14days post-ESA, the YO transitions to the committed state; hemolymph ecdysteroid titers increase further and the animal reaches ecdysis ~3weeks post-ESA. Two conserved signaling pathways, mechanistic target of rapamycin (mTOR) and transforming growth factor-ß (TGF-ß), are expressed in the Gecarcinus lateralis YO. Rapamycin, an mTOR antagonist, inhibits YO ecdysteroidogenesis in vitro. In this study, rapamycin lowered hemolymph ecdysteroid titer in ESA G. lateralis in vivo; levels were significantly lower than in control animals at all intervals (1-14days post-ESA). Injection of SB431542, an activin TGF-ß receptor antagonist, lowered hemolymph ecdysteroid titers 7 and 14days post-ESA, but had no effect on ecdysteroid titers at 1 and 3days post-ESA. mRNA levels of mTOR signaling genes Gl-mTOR, Gl-Akt, and Gl-S6k were increased by 3days post-ESA; the increases in Gl-mTOR and Gl-Akt mRNA levels were blocked by SB431542. Gl-elongation factor 2 and Gl-Rheb mRNA levels were not affected by ESA, but SB431542 lowered mRNA levels at Days 3 and 7 post-ESA. The mRNA level of an activin TGF-ß peptide, Gl-myostatin-like factor (Mstn), increased 5.5-fold from 0 to 3days post-ESA, followed by a 50-fold decrease from 3 to 7days post-ESA. These data suggest that (1) YO activation involves an up regulation of the mTOR signaling pathway; (2) mTOR is required for YO commitment; and (3) a Mstn-like factor mediates the transition of the YO from the activated to the committed state.


Subject(s)
Brachyura/metabolism , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta/metabolism , Animals , Benzamides/pharmacology , Brachyura/anatomy & histology , Brachyura/drug effects , Dioxoles/pharmacology , Ecdysteroids/metabolism , Gene Expression Regulation/drug effects , Hemolymph/drug effects , Hemolymph/metabolism , Molting/physiology , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics
4.
J Exp Biol ; 217(Pt 5): 796-808, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24198255

ABSTRACT

In decapod crustaceans, regulation of molting is controlled by the X-organ/sinus gland complex in the eyestalks. The complex secretes molt-inhibiting hormone (MIH), which suppresses production of ecdysteroids by the Y-organ (YO). MIH signaling involves nitric oxide and cGMP in the YO, which expresses nitric oxide synthase (NOS) and NO-sensitive guanylyl cyclase (GC-I). Molting can generally be induced by eyestalk ablation (ESA), which removes the primary source of MIH, or by multiple leg autotomy (MLA). In our work on Carcinus maenas, however, ESA has limited effects on hemolymph ecdysteroid titers and animals remain in intermolt at 7 days post-ESA, suggesting that adults are refractory to molt induction techniques. Consequently, the effects of ESA and MLA on molting and YO gene expression in C. maenas green and red color morphotypes were determined at intermediate (16 and 24 days) and long-term (~90 days) intervals. In intermediate-interval experiments, ESA of intermolt animals caused transient twofold to fourfold increases in hemolymph ecdysteroid titers during the first 2 weeks. In intermolt animals, long-term ESA increased hemolymph ecdysteroid titers fourfold to fivefold by 28 days post treatment, but there was no late premolt peak (>400 pg µl(-1)) characteristic of late premolt animals and animals did not molt by 90 days post-ESA. There was no effect of ESA or MLA on the expression of Cm-elongation factor 2 (EF2), Cm-NOS, the beta subunit of GC-I (Cm-GC-Iß), a membrane receptor GC (Cm-GC-II) and a soluble NO-insensitive GC (Cm-GC-III) in green morphs. Red morphs were affected by prolonged ESA and MLA treatments, as indicated by large decreases in Cm-EF2, Cm-GC-II and Cm-GC-III mRNA levels. ESA accelerated the transition of green morphs to the red phenotype in intermolt animals. ESA delayed molting in premolt green morphs, whereas intact and MLA animals molted by 30 days post treatment. There were significant effects on YO gene expression in intact animals: Cm-GC-Iß mRNA increased during premolt and Cm-GC-III mRNA decreased during premolt and increased during postmolt. Cm-MIH transcripts were detected in eyestalk ganglia, the brain and the thoracic ganglion from green intermolt animals, suggesing that MIH in the brain and thoracic ganglion prevents molt induction in green ESA animals.


Subject(s)
Arthropod Proteins/genetics , Brachyura/physiology , Ecdysteroids/blood , Gene Expression Regulation , Molting , Signal Transduction , Amino Acid Sequence , Animals , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/growth & development , California , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Hemolymph/metabolism , Introduced Species , Male , Molecular Sequence Data , Nervous System/growth & development , Nervous System/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism , Pigmentation , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
5.
J Exp Biol ; 210(Pt 20): 3525-37, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17921154

ABSTRACT

The expression of the vitellogenin gene of the red-claw crayfish Cherax quadricarinatus (CqVg) was previously demonstrated in male crayfish during an endocrinologically induced molt cycle. The hypothesis that this expression is under the direct control of ecdysteroids was tested in this study both in vivo and in vitro. Unlike vitellogenin of insects, CqVg was not found to be ecdysteroid-responsive. Thus, a multigenic approach was employed for the identification of other hepatopancreatic ecdysteroid-responsive genes by a cDNA microarray. For the purposes of this study, a multi-parametric molt-staging technique, based on X-ray detection of gastrolith growth, was developed. To identify ecdysteroid-responsive genes during premolt, the molt cycle was induced by two manipulations, 20-hydroxyecdysone administration and X-organ-sinus gland complex removal; both resulted in significant elevation of ecdysteroids. Two clusters of affected genes (129 and 122 genes, respectively) were revealed by the microarray. It is suggested that only genes belonging to similarly responsive (up- or downregulated) gene clusters in both manipulations (102 genes) could be considered putative ecdysteroid-responsive genes. Some of these ecdysteroid-responsive genes showed homology to genes controlling chitin metabolism, proteases and other cellular activities, while 56.8% were unknown. The majority of the genes were downregulated, presumably by an energetic shift of the hepatopancreas prior to ecdysis. The effect of 20-hydroxyecdysone on representative genes from this group was confirmed in vitro using a hepatopancreas tissue culture. This approach for ecdysteroid-responsive gene identification could also be implemented in other tissues for the elucidation of ecdysteroid-specific signaling pathways during the crustacean molt cycle.


Subject(s)
Astacoidea/growth & development , Astacoidea/genetics , Ecdysteroids/pharmacology , Hepatopancreas/metabolism , Life Cycle Stages/drug effects , Molting/drug effects , Molting/genetics , Animals , Astacoidea/drug effects , Cells, Cultured , Gene Expression Regulation/drug effects , Hepatopancreas/drug effects , Male , Oligonucleotide Array Sequence Analysis , Vitellogenins/genetics , Vitellogenins/metabolism
6.
Cell Stress Chaperones ; 8(3): 258-64, 2003.
Article in English | MEDLINE | ID: mdl-14984059

ABSTRACT

Lobster claw muscle undergoes atrophy in correlation with increasing ecdysteroid (steroid molting hormone) titers during premolt. In vivo molecular chaperone (constitutive heat shock protein 70 [Hsc70], heat shock protein 70 [Hsp70], and Hsp90) and polyubiquitin messenger ribonucleic acid (mRNA) levels were examined in claw and abdominal muscles from individual premolt or intermolt lobsters. Polyubiquitin gene expression was assayed as a marker for muscle atrophy. Both Hsc70 and Hsp90 mRNA levels were significantly induced in premolt relative to intermolt lobster claw muscle, whereas Hsp70 mRNA levels were not. Hsp90 gene expression was significantly higher in premolt claw muscle when compared with abdominal muscle. Polyubiquitin mRNA levels were elevated in premolt when compared with intermolt claw muscle and significantly elevated relative to premolt abdominal muscle.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molting , Nephropidae/growth & development , Nephropidae/metabolism , Polyubiquitin/genetics , Abdominal Muscles/metabolism , Animals , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Male , Nephropidae/genetics , Polyubiquitin/analysis , RNA, Messenger/metabolism
7.
Biol Bull ; 203(3): 331-7, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12480723

ABSTRACT

The American lobster, Homarus americanus, encounters osmotic stress throughout its life cycle. To understand the molecular basis of osmotic stress responses in vivo, we used homologous cDNA probes to characterize the mRNA patterns of lobster HSP70 (=70-kDa heat-shock protein), HSP90 (=90-kDa heat-shock protein), and polyubiquitin during hypo- and hyper-osmotic stress in abdominal muscle and hepatopancreas (a digestive tissue) at 30, 60, and 120 min of osmotic stress. Hypo- and hyper-osmotic stress significantly increased the levels of the mRNAs encoding HSP70 and HSP90 in abdominal muscle. Hyper-osmotic stress increased HSP90 mRNA levels in hepatopancreas, but hypo-osmotic stress did not. Both abdominal muscle and hepatopancreas exhibited significant changes in polyubiquitin gene expression during osmotic stress. In abdominal muscle, polyubiquitin mRNA levels increased during both hypo- and hyper-osmotic stress. Hepatopancreas, however, showed a significant elevation in polyubiquitin mRNA only during hypo-osmotic stress.


Subject(s)
Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Nephropidae/genetics , Nephropidae/physiology , Acute Disease , Animals , Digestive System/metabolism , Fresh Water , Hemolymph/physiology , Muscle, Smooth/metabolism , Osmotic Pressure , Polyubiquitin/genetics , Seawater , Time Factors
8.
Cell Stress Chaperones ; 7(1): 97-106, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11892992

ABSTRACT

Using homologous molecular probes, we examined the influence of equivalent temperature shifts on the in vivo expression of genes coding for a constitutive heat shock protein (Hsc70), heat shock proteins (Hsps) (Hsp70 and Hsp90), and polyubiquitin, after acclimation in the American lobster, Homarus americanus. We acclimated sibling, intermolt, juvenile male lobsters to thermal regimes experienced during overwintering conditions (0.4 +/- 0.3 degrees C), and to ambient Pacific Ocean temperatures (13.6 +/- 1.2 degrees C), for 4-5 weeks. Both groups were subjected to an acute thermal stress of 13.0 degrees C, a temperature shift previously found to elicit a robust heat shock response in ambient-acclimated lobsters. Animals were examined after several durations of acute heat shock (0.25-2 hours) and after several recovery periods (2-48 hours) at the previous acclimation temperature, following a 2-hour heat shock. Significant inductions in Hsp70, Hsp90, and polyubiquitin messenger RNA (mRNA) levels were found for the ambient-acclimated group. Alternatively, for the cold-acclimated group, an acute thermal stress over an equivalent interval resulted in no induction in mRNA levels for any of the genes examined. For the ambient-acclimated group, measurements of polyubiquitin mRNA levels showed that hepatopancreas, a digestive tissue, incurred greater irreversible protein damage relative to the abdominal muscle, a tissue possessing superior stability over the thermal intervals tested.


Subject(s)
Body Temperature Regulation/physiology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Polyubiquitin/genetics , Polyubiquitin/metabolism , Stress, Physiological/physiopathology , Animals , Gene Expression/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Hot Temperature , Male , Nephropidae , Protein Denaturation , RNA, Messenger/analysis
SELECTION OF CITATIONS
SEARCH DETAIL