Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.037
Filter
1.
Eur J Neurosci ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711292

ABSTRACT

A mounting body of evidences suggests that patients with chronic heart failure (HF) frequently experience cognitive impairments, but the neuroanatomical mechanism underlying these impairments remains elusive. In this retrospective study, 49 chronic HF patients and 49 healthy controls (HCs) underwent brain structural MRI scans and cognitive assessments. Cortical morphology index (cortical thickness, complexity, sulcal depth and gyrification) were evaluated. Correlations between cortical morphology and cognitive scores and clinical variables were explored. Logistic regression analysis was employed to identify risk factors for predicting 3-year major adverse cardiovascular events. Compared with HCs, patients with chronic HF exhibited decreased cognitive scores (p < .001) and decreased cortical thickness, sulcal depth and gyrification in brain regions involved cognition, sensorimotor, autonomic nervous system (family-wise error correction, all p values <.05). Notably, HF duration and New York Heart Association (NYHA) demonstrated negative correlations with abnormal cortex morphology, particularly HF duration and thickness in left precentral gyrus (r = -.387, p = .006). Cortical morphology characteristics exhibited positive associations with global cognition, particularly cortical thickness in left pars opercularis (r = .476, p < .001). NYHA class is an independent risk factor for adverse outcome (p = .001). The observed correlation between abnormal cortical morphology and global cognition suggested that cortical morphology may serve as a promising imaging biomarker and provide insights into neuroanatomical underpinnings of cognitive impairment in patients with chronic HF.

2.
Article in English | MEDLINE | ID: mdl-38781436

ABSTRACT

BACKGROUND: Cardiac cycle morphological changes can accelerate plaque growth proximal to myocardial bridging (MB) in the left anterior descending artery (LAD). OBJECTIVE: To assess coronary CT angiography (CCTA)-based vascular radiomics for predicting proximal plaque development in LAD MB. METHODS: Patients with repeated CCTA scans showing LAD MB without proximal plaque in index CCTA were included from Jinling Hospital as development set. They were divided into training and internal testing in an 8:2 ratio. Patients from 4 other tertiary hospitals were set as external validation set. The endpoint was proximal plaque development of LAD MB in follow-up CCTA. Four vascular radiomics models were built: MB centerline (MB CL), proximal MB CL (pMB CL), MB cross section (MB CS), and proximal MB CS (pMB CS), whose performances were evaluated using area under the curve (AUC), integrated discrimination improvement (IDI) and net reclassification improvement (NRI). RESULTS: 295 patients were included in the development (n=192; median age, 54±11 years; 137 men) and external validation sets (n=103; median age, 57±9 years; 57 men). The pMB CS vascular radiomics model exhibited higher AUCs in training, internal test, and external sets (AUC=0.78, 0.75, 0.75) than the clinical and anatomical model (all p<0.05). Integration of the pMB CS vascular radiomics model significantly raised the AUC of the clinical and anatomical model from 0.56 to 0.75 (p=0.002), along with enhanced NRI (0.76 [0.37-1.14], p<0.001) and IDI (0.17 [0.07-0.26], p<0.001) in the external validation set. CONCLUSION: The CCTA-based pMB CS vascular radiomics model can predict plaque development in LAD MB.

3.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739859

ABSTRACT

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Subject(s)
Anti-Bacterial Agents , Photothermal Therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Water/chemistry , Mice , Free Radicals/chemistry , Boron/chemistry , Boron/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
4.
PLoS One ; 19(5): e0303506, 2024.
Article in English | MEDLINE | ID: mdl-38771826

ABSTRACT

OBJECTIVE: To elucidate potential molecular mechanisms differentiating osteoarthritis (OA) and rheumatoid arthritis (RA) through a bioinformatics analysis of differentially expressed genes (DEGs) in patient synovial cells, aiming to provide new insights for clinical treatment strategies. MATERIALS AND METHODS: Gene expression datasets GSE1919, GSE82107, and GSE77298 were downloaded from the Gene Expression Omnibus (GEO) database to serve as the training groups, with GSE55235 being used as the validation dataset. The OA and RA data from the GSE1919 dataset were merged with the standardized data from GSE82107 and GSE77298, followed by batch effect removal to obtain the merged datasets of differential expressed genes (DEGs) for OA and RA. Intersection analysis was conducted on the DEGs between the two conditions to identify commonly upregulated and downregulated DEGs. Enrichment analysis was then performed on these common co-expressed DEGs, and a protein-protein interaction (PPI) network was constructed to identify hub genes. These hub genes were further analyzed using the GENEMANIA online platform and subjected to enrichment analysis. Subsequent validation analysis was conducted using the GSE55235 dataset. RESULTS: The analysis of differentially expressed genes in the synovial cells from patients with Osteoarthritis (OA) and Rheumatoid Arthritis (RA), compared to a control group (individuals without OA or RA), revealed significant changes in gene expression patterns. Specifically, the genes APOD, FASN, and SCD were observed to have lower expression levels in the synovial cells of both OA and RA patients, indicating downregulation within the pathological context of these diseases. In contrast, the SDC1 gene was found to be upregulated, displaying higher expression levels in the synovial cells of OA and RA patients compared to normal controls.Additionally, a noteworthy observation was the downregulation of the transcription factor PPARG in the synovial cells of patients with OA and RA. The decrease in expression levels of PPARG further validates the alteration in lipid metabolism and inflammatory processes associated with the pathogenesis of OA and RA. These findings underscore the significance of these genes and the transcription factor not only as biomarkers for differential diagnosis between OA and RA but also as potential targets for therapeutic interventions aimed at modulating their expression to counteract disease progression. CONCLUSION: The outcomes of this investigation reveal the existence of potentially shared molecular mechanisms within Osteoarthritis (OA) and Rheumatoid Arthritis (RA). The identification of APOD, FASN, SDC1, TNFSF11 as key target genes, along with their downstream transcription factor PPARG, highlights common potential factors implicated in both diseases. A deeper examination and exploration of these findings could pave the way for new candidate targets and directions in therapeutic research aimed at treating both OA and RA. This study underscores the significance of leveraging bioinformatics approaches to unravel complex disease mechanisms, offering a promising avenue for the development of more effective and targeted treatments.


Subject(s)
Arthritis, Rheumatoid , Gene Expression Profiling , Osteoarthritis , Protein Interaction Maps , Synovial Membrane , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Humans , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Protein Interaction Maps/genetics , Synovial Membrane/metabolism , Synovial Membrane/pathology , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Regulation , Databases, Genetic
6.
Eur J Heart Fail ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733212

ABSTRACT

AIMS: To describe the baseline characteristics of participants in the FINEARTS-HF trial, contextualized with prior trials including patients with heart failure (HF) with mildly reduced and preserved ejection fraction (HFmrEF/HFpEF). The FINEARTS-HF trial is comparing the effects of the non-steroidal mineralocorticoid receptor antagonist finerenone with placebo in reducing cardiovascular death and total worsening HF events in patients with HFmrEF/HFpEF. METHODS AND RESULTS: Patients with symptomatic HF, left ventricular ejection fraction (LVEF) ≥40%, estimated glomerular filtration rate ≥ 25 ml/min/1.73 m2, elevated natriuretic peptide levels and evidence of structural heart disease were enrolled and randomized to finerenone titrated to a maximum of 40 mg once daily or matching placebo. We validly randomized 6001 patients to finerenone or placebo (mean age 72 ± 10 years, 46% women). The majority were New York Heart Association functional class II (69%). The baseline mean LVEF was 53 ± 8% (range 34-84%); 36% of participants had a LVEF <50% and 64% had a LVEF ≥50%. The median N-terminal pro-B-type natriuretic peptide (NT-proBNP) was 1041 (interquartile range 449-1946) pg/ml. A total of 1219 (20%) patients were enrolled during or within 7 days of a worsening HF event, and 3247 (54%) patients were enrolled within 3 months of a worsening HF event. Compared with prior large-scale HFmrEF/HFpEF trials, FINEARTS-HF participants were more likely to have recent (within 6 months) HF hospitalization and greater symptoms and functional limitations. Further, concomitant medications included a larger percentage of sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors than previous trials. CONCLUSIONS: FINEARTS-HF has enrolled a broad range of high-risk patients with HFmrEF and HFpEF. The trial will determine the safety and efficacy of finerenone in this population.

7.
Virchows Arch ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733379

ABSTRACT

Cyclin D1 protein-positive diffuse large B cell lymphoma (DLBCL) has an immunophenotype of CD5(-) cyclin D1(+) SOX11(-), and most cases lack a CCND1 rearrangement and have a gene expression profile of DLBCL. Rarely, cyclin D1 protein-positive DLBCL harbors a CCND1 rearrangement, and some genetic copy number features typical of mantle cell lymphoma (MCL) have been detected. Since gene expression studies have not been performed, whether such CCND1-rearranged cases represent cyclin D1 protein-positive DLBCL or CD5/SOX11 double-negative pleomorphic MCL remains unclear. To date, no cases of CD5/SOX11 double-negative MCL have been reported. In this study, we collected eight cases initially diagnosed as cyclin D1 protein-positive DLBCL, including four with a CCND1 rearrangement and four without. Immunohistochemically, all four CCND1-rearranged cases had >50% of tumor cells positive for cyclin D1 protein, whereas only one (25%) non-rearranged case had >50% positive tumor cells. Analysis of genome-wide copy number, mutational, and gene expression profiles revealed that CCND1-rearranged cases were similar to MCL, whereas CCND1-non-rearranged cases resembled DLBCL. Despite the SOX11 negativity by immunohistochemistry, CCND1-rearranged cases had a notable trend (P = 0.064) of higher SOX11 mRNA levels compared to non-rearranged cases. Here, we show for the first time that CCND1 rearrangement could be useful for identifying CD5/SOX11 double-negative pleomorphic MCL in cases diagnosed as cyclin D1 protein-positive DLBCL. Cases with >50% cyclin D1 protein-positive tumor cells immunohistochemically and higher SOX11 mRNA levels are more likely to have a CCND1 rearrangement, and fluorescence in situ hybridization can be used to detect the rearrangement.

8.
N Engl J Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739079

ABSTRACT

BACKGROUND: One of the major determinants of exercise intolerance and limiting symptoms among patients with obstructive hypertrophic cardiomyopathy (HCM) is an elevated intracardiac pressure resulting from left ventricular outflow tract obstruction. Aficamten is an oral selective cardiac myosin inhibitor that reduces left ventricular outflow tract gradients by mitigating cardiac hypercontractility. METHODS: In this phase 3, double-blind trial, we randomly assigned adults with symptomatic obstructive HCM to receive aficamten (starting dose, 5 mg; maximum dose, 20 mg) or placebo for 24 weeks, with dose adjustment based on echocardiography results. The primary end point was the change from baseline to week 24 in the peak oxygen uptake as assessed by cardiopulmonary exercise testing. The 10 prespecified secondary end points (tested hierarchically) were change in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS), improvement in the New York Heart Association (NYHA) functional class, change in the pressure gradient after the Valsalva maneuver, occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver, and duration of eligibility for septal reduction therapy (all assessed at week 24); change in the KCCQ-CSS, improvement in the NYHA functional class, change in the pressure gradient after the Valsalva maneuver, and occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver (all assessed at week 12); and change in the total workload as assessed by cardiopulmonary exercise testing at week 24. RESULTS: A total of 282 patients underwent randomization: 142 to the aficamten group and 140 to the placebo group. The mean age was 59.1 years, 59.2% were men, the baseline mean resting left ventricular outflow tract gradient was 55.1 mm Hg, and the baseline mean left ventricular ejection fraction was 74.8%. At 24 weeks, the mean change in the peak oxygen uptake was 1.8 ml per kilogram per minute (95% confidence interval [CI], 1.2 to 2.3) in the aficamten group and 0.0 ml per kilogram per minute (95% CI, -0.5 to 0.5) in the placebo group (least-squares mean between-group difference, 1.7 ml per kilogram per minute; 95% CI, 1.0 to 2.4; P<0.001). The results for all 10 secondary end points were significantly improved with aficamten as compared with placebo. The incidence of adverse events appeared to be similar in the two groups. CONCLUSIONS: Among patients with symptomatic obstructive HCM, treatment with aficamten resulted in a significantly greater improvement in peak oxygen uptake than placebo. (Funded by Cytokinetics; SEQUOIA-HCM ClinicalTrials.gov number, NCT05186818.).

9.
Photochem Photobiol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695248

ABSTRACT

Astaxanthin (AST) is a xanthophyll carotenoid with strong oxidation resistance, which can effectively scavenge various free radicals and protect organisms from oxidative damage. AST is also known to have prominent anti-aging effects, but the underlying mechanism of AST in anti-radiation aging is largely unknown. In this work, we applied ultraviolet (UV) irradiation to accelerate the aging of Caenorhabditis elegans (C. elegans) and treated the nematodes with AST to explore whether and how AST could attenuate the radiation-induced aging effect. Our results showed that AST improved the survival rate of C. elegans, reduced the aging biomarkers, and alleviated the mitochondrial dysfunction caused by the irradiation. Based on the transcriptome sequencing analysis, we identified that the key genes regulated by AST were involved in JNK-MAPK and DAF-16 longevity signaling pathways. Furthermore, we employed jnk-1 and daf-16 mutants and verified the role of the JNK-1/DAF-16 signaling pathway in the anti-aging effect. As such, this study has not only demonstrated that AST can resist the aging process caused by UV-irradiation but also revealed the anti-aging mechanism of AST through JNK-1/DAF-16 activation in C. elegans.

10.
ACS Omega ; 9(13): 15304-15310, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585084

ABSTRACT

ZnGa2O4 sensing films were prepared using an RF magnetron sputtering system and connected to a commercial metal oxide semiconductor field-effect transistor (MOSFET) as the extended-gate field-effect transistor (EGFET) to detect pH values. Experimental parameters were adjusted by varying the oxygen flow rate in the process chamber to produce ZnGa2O4 sensing films with different oxygen ratios. These films were then treated in a furnace tube at an annealing temperature of 700 °C. The sensitivity and linearity of the constant current mode and the constant voltage mode were measured and analyzed in the pH range of 2-12. Under the deposition conditions with an oxygen ratio of 6%, the sensitivity reached 23.14 mV/pH and 33.49 µA/pH, with corresponding linearity values of 92.1 and 96.15%, respectively. Finally, the sensing performance of the ZnGa2O4 EGFET pH sensor with and without annealing processes was analyzed and compared.

11.
JACS Au ; 4(3): 908-918, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559739

ABSTRACT

The use of pharmacological chaperones (PCs) to stabilize specific enzymes and impart a therapeutic benefit is an emerging strategy in drug discovery. However, designing molecules that can bind optimally to their targets at physiological pH remains a major challenge. Our previous study found that dibasic polyhydroxylated pyrrolidine 5 exhibited superior pH-selective inhibitory activity and chaperoning activity for human α-galactosidase A (α-Gal A) compared with its monobasic parent molecule, 4. To further investigate the role of different C-2 moieties on the pH-selectivity and protecting effects of these compounds, we designed and synthesized a library of monobasic and dibasic iminosugars, screened them for α-Gal A-stabilizing activity using thermal shift and heat-induced denaturation assays, and characterized the mechanistic basis for this stabilization using X-ray crystallography and binding assays. We noted that the dibasic iminosugars 5 and 20 protect α-Gal A from denaturation and inactivation at lower concentrations than monobasic or other N-substituted derivatives; a finding attributed to the nitrogen on the C-2 methylene of 5 and 20, which forms the bifurcated salt bridges (BSBs) with two carboxyl residues, E203 and D231. Additionally, the formation of BSBs at pH 7.0 and the electrostatic repulsion between the vicinal ammonium cations of dibasic iminosugars at pH 4.5 are responsible for their pH-selective binding to α-Gal A. Moreover, compounds 5 and 20 demonstrated promising results in improving enzyme replacement therapy and exhibited significant chaperoning effects in Fabry cells. These findings suggest amino-iminosugars 5 and 20 as useful models to demonstrate how an additional exocyclic amino group can improve their pH-selectivity and protecting effects, providing new insights for the design of pH-selective PCs.

12.
Sci Rep ; 14(1): 7685, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561405

ABSTRACT

The colloidal borescope, using colloidal particle motion, is used to monitor the flow velocities and directions of groundwater. It integrates advanced techniques such as microscopy, high-speed photography, and big data computing and enjoys high sensitivity at the micron level. However, In the same well, the groundwater flow velocity monitored by colloidal hole mirror is varies greatly from that obtained by conventional hydrogeological monitoring, such as pumping test. In order to solve this problem, the stability catcher and stratified packer are designed to control the interference of the vertical flow in drilling, and to monitor the flow velocity and direction of groundwater velocity at the target aquifer and target fracture. Five wells with different aquifers and different groundwater types were selected for monitoring in south-central China. The instantaneous velocity and direction are converted into east-west component and north-south component, the average velocity and direction is calculated according to the time of 10 min, and the particle trajectory diagram is established. Based on these results, it proposed a concept of cumulative flow velocity. Using curve-fitting equations, the limits of cumulative flow velocities as the monitoring time tends to infinity were then calculated as the actual flow velocities of the groundwater. The permeability coefficient of aquifer is calculated by using the fissure ratio of aquifer, hydraulic slope and flow velocity, and compared with the permeability coefficient obtained by pumping test. The results are as follows: (1) The variation coefficient of the instantaneous flow velocity measured at the same depth in the same well at different times is greater than that of the time average flow velocity and greater than that of the cumulative flow velocity. The variation coefficient of the actual velocity is the smallest, indicating that the risk of using the actual flow velocity is lower. (2) The variation coefficient of the flow rate monitored at different depths in the same well is mainly controlled by the properties of the aquifer. The more uniform water storage space in the aquifer, the smaller the variation coefficient. (3) The comparison between the permeability coefficient obtained by monitoring and the permeability coefficient obtained by pumping test shows that the flow of structural fissure water controlled by planar fissure is more surface flow, and the results are consistent. When the groundwater flow is controlled by pores and solution gaps, the flow channel is complicated, which is easy to produce turbulent flow, and the result consistency is poor. (4) According to different research accuracy requirements, different monitoring and calculation methods can be selected for different aquifers and groundwater types. Researches show that, the permeability coefficient calculated for the actual flow velocity in well DR01 is the same as that calculated for the pumping test. The aquifer characteristics reflected by the coefficient of variation of the actual flow velocity in the same aquifer are more realistic. The pumping test method obtains the comprehensive parameters of a certain aquifer, and this method can be used to monitor a certain fissure. In this paper, the new technology developed for monitoring, and the new algorithm established for data processing, can accurately obtain the flow velocity and direction of groundwater, using capsule hole mirror monitoring method. The key parameters of hydrogeology can be obtained by using one well, which can reduce the time and cost input and improve the work efficiency.

13.
Chin J Traumatol ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38631945

ABSTRACT

PURPOSE: The toughest challenge in pedestrian traffic accident identification lies in ascertaining injury manners. This study aimed to systematically simulate and parameterize 3 types of craniocerebral injury including impact injury, fall injury, and run-over injury, to compare the injury response outcomes of different injury manners. METHODS: Based on the Total Human Model for Safety (THUMS) and its enhanced human model THUMS-hollow structures, a total of 84 simulations with 3 injury manners, different loading directions, and loading velocities was conducted. Von Mises stress, intracranial pressure, maximum principal strain, cumulative strain damage measure, shear stress, and cranial strain were employed to analyze the injury response of all areas of the brain. To examine the association between injury conditions and injury consequences, correlation analysis, principal component analysis, linear regression, and stepwise linear regression were utilized. RESULTS: There is a significant correlation observed between each criterion of skull and brain injury (p < 0.01 in all Pearson correlation analysis results). A 2-phase increase of cranio-cerebral stress and strain as impact speed increases. In high-speed impact (> 40 km/h), the Von Mises stress on the skull was with a high possibility exceed the threshold for skull fracture (100 MPa). When falling and making temporal and occipital contact with the ground, the opposite side of the impacted area experiences higher frequency stress concentration than contact at other conditions. Run-over injuries tend to have a more comprehensive craniocerebral injury, with greater overall deformation due to more adequate kinetic energy conduction. The mean value of maximum principal strain of brain and Von Mises stress of cranium at run-over condition are 1.39 and 403.8 MPa, while they were 1.31, 94.11 MPa and 0.64, 120.5 MPa for the impact and fall conditions, respectively. The impact velocity also plays a significant role in craniocerebral injury in impact and fall loading conditions (the p of all F test < 0.05). A regression equation of the craniocerebral injury manners in pedestrian accidents was established. CONCLUSION: The study distinguished the craniocerebral injuries caused in different manners, elucidated the biomechanical mechanisms of craniocerebral injury, and provided a biomechanical foundation for the identification of craniocerebral injury in legal contexts.

14.
J Asian Nat Prod Res ; : 1-10, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594843

ABSTRACT

Two pairs of cyclohexene amide alkaloid enantiomers were obtained from the root of Piper nigrum. Their plane structures were established by NMR and HRESIMS spectra. The absolute configurations of 1a/1b and 2a/2b were determined by the comparison between the experimental and calculated electronic circular dichroism (ECD) spectra. All identified compounds were tested for inhibitory effects on acetylcholinesterase (AChE) in vitro. Notably, compounds 1b and 2b showed strong inhibitory effects on AChE and the interaction between proteins and compounds was discussed by molecular docking studies.

15.
Org Lett ; 26(15): 3140-3144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38563571

ABSTRACT

Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.

16.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618249

ABSTRACT

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

17.
Sci Rep ; 14(1): 9338, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654120

ABSTRACT

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Subject(s)
Disease Resistance , Lactic Acid , Nicotiana , Oxylipins , Phytophthora , Plant Diseases , Phytophthora/pathogenicity , Phytophthora/physiology , Nicotiana/microbiology , Nicotiana/immunology , Nicotiana/genetics , Nicotiana/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Oxylipins/metabolism , Lactic Acid/metabolism , Cyclopentanes/metabolism , Salicylic Acid/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Signal Transduction , Hydrogen Peroxide/metabolism
18.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38574838

ABSTRACT

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Subject(s)
Benzamides , Ferroptosis , Microglia , NF-E2-Related Factor 2 , Pyrroles , Reperfusion Injury , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Disease Models, Animal , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cell Line , Active Transport, Cell Nucleus/drug effects
19.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675589

ABSTRACT

The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.


Subject(s)
Itraconazole , Nanoparticles , Solubility , Surface-Active Agents , Itraconazole/chemistry , Itraconazole/pharmacokinetics , Itraconazole/administration & dosage , Nanoparticles/chemistry , Humans , Caco-2 Cells , Animals , Rats , Administration, Oral , Surface-Active Agents/chemistry , Male , Biological Availability , Particle Size , X-Ray Diffraction , Calorimetry, Differential Scanning , Cholic Acid/chemistry
20.
J Geriatr Cardiol ; 21(3): 251-314, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38665287

ABSTRACT

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, significantly impacting patients' quality of life and increasing the risk of death, stroke, heart failure, and dementia. Over the past two decades, there have been significant breakthroughs in AF risk prediction and screening, stroke prevention, rhythm control, catheter ablation, and integrated management. During this period, the scale, quality, and experience of AF management in China have greatly improved, providing a solid foundation for the development of guidelines for the diagnosis and management of AF. To further promote standardized AF management, and apply new technologies and concepts to clinical practice in a timely and comprehensive manner, the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation. The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population. The guidelines have also reevaluated the clinical application of AF screening, emphasized the significance of early rhythm control, and highlighted the central role of catheter ablation in rhythm control.

SELECTION OF CITATIONS
SEARCH DETAIL
...