Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Transl Med ; 22(1): 387, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664746

ABSTRACT

BACKGROUND: Integrating quantitative trait loci (QTL) data related to molecular phenotypes with genome-wide association study (GWAS) data is an important post-GWAS strategic approach employed to identify disease-associated molecular features. Various types of molecular phenotypes have been investigated in neuropsychiatric disorders. However, these findings pertaining to distinct molecular features are often independent of each other, posing challenges for having an overview of the mapped genes. METHODS: In this study, we comprehensively summarized published analyses focusing on four types of risk-related molecular features (gene expression, splicing transcriptome, protein abundance, and DNA methylation) across five common neuropsychiatric disorders. Subsequently, we conducted supplementary analyses with the latest GWAS dataset and corresponding deficient molecular phenotypes using Functional Summary-based Imputation (FUSION) and summary data-based Mendelian randomization (SMR). Based on the curated and supplemented results, novel reliable genes and their functions were explored. RESULTS: Our findings revealed that eQTL exhibited superior ability in prioritizing risk genes compared to the other QTL, followed by sQTL. Approximately half of the genes associated with splicing transcriptome, protein abundance, and DNA methylation were successfully replicated by eQTL-associated genes across all five disorders. Furthermore, we identified 436 novel reliable genes, which enriched in pathways related with neurotransmitter transportation such as synaptic, dendrite, vesicles, axon along with correlations with other neuropsychiatric disorders. Finally, we identified ten multiple molecular involved regulation patterns (MMRP), which may provide valuable insights into understanding the contribution of molecular regulation network targeting these disease-associated genes. CONCLUSIONS: The analyses prioritized novel and reliable gene sets related with five molecular features based on published and supplementary results for five common neuropsychiatric disorders, which were missed in the original GWAS analysis. Besides, the involved MMRP behind these genes could be given priority for further investigation to elucidate the pathogenic molecular mechanisms underlying neuropsychiatric disorders in future studies.


Subject(s)
DNA Methylation , Genetic Predisposition to Disease , Genome-Wide Association Study , Mental Disorders , Phenotype , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Mental Disorders/genetics , DNA Methylation/genetics , Mendelian Randomization Analysis , Transcriptome/genetics
2.
Mol Psychiatry ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684796

ABSTRACT

N6-methyladenosine (m6A) methylation regulates gene expression/protein by influencing numerous aspects of mRNA metabolism and contributes to neuropsychiatric diseases. Here, we integrated multi-omics data and genome-wide association study summary data of schizophrenia (SCZ), bipolar disorder (BP), attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD) to reveal the role of m6A in neuropsychiatric disorders by using transcriptome-wide association study (TWAS) tool and Summary-data-based Mendelian randomization (SMR). Our investigation identified 86 m6A sites associated with seven neuropsychiatric diseases and then revealed 7881 associations between m6A sites and gene expressions. Based on these results, we discovered 916 significant m6A-gene associations involving 82 disease-related m6A sites and 606 genes. Further integrating the 58 disease-related genes from TWAS and SMR analysis, we obtained 61, 8, 7, 3, and 2 associations linking m6A-disease, m6A-gene, and gene-disease for SCZ, BP, AD, MDD, and PD separately. Functional analysis showed the m6A mapped genes were enriched in "response to stimulus" pathway. In addition, we also analyzed the effect of gene expression on m6A and the post-transcription effect of m6A on protein. Our study provided new insights into the genetic component of m6A in neuropsychiatric disorders and unveiled potential pathogenic mechanisms where m6A exerts influences on disease through gene expression/protein regulation.

3.
Article in English | MEDLINE | ID: mdl-38430954

ABSTRACT

Cumulative evidence has showed the deficits of inhibitory control in patients with attention deficit hyperactivity disorder (ADHD), which is considered as an endophenotype of ADHD. Genetic study of inhibitory control could advance gene discovery and further facilitate the understanding of ADHD genetic basis, but the studies were limited in both the general population and ADHD patients. To reveal genetic risk variants of inhibitory control and its potential genetic relationship with ADHD, we conducted genome-wide association studies (GWAS) on inhibitory control using three datasets, which included 783 and 957 ADHD patients and 1350 healthy children. Subsequently, we employed polygenic risk scores (PRS) to explore the association of inhibitory control with ADHD and related psychiatric disorders. Firstly, we identified three significant loci for inhibitory control in the healthy dataset, two loci in the case dataset, and one locus in the meta-analysis of three datasets. Besides, we found more risk genes and variants by applying transcriptome-wide association study (TWAS) and conditional FDR method. Then, we constructed a network by connecting the genes identified in our study, leading to the identification of several vital genes. Lastly, we identified a potential relationship between inhibitory control and ADHD and autism by PRS analysis and found the direct and mediated contribution of the identified genetic loci on ADHD symptoms by mediation analysis. In conclusion, we revealed some genetic risk variants associated with inhibitory control and elucidated the benefit of inhibitory control as an endophenotype, providing valuable insights into the mechanisms underlying ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Humans , Attention Deficit Disorder with Hyperactivity/psychology , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Genetic Loci , Risk Factors , Genetic Risk Score
4.
Mol Psychiatry ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38233469

ABSTRACT

Previous studies have shown that excessive alcohol consumption is associated with poor sleep. However, the health risks of light-to-moderate alcohol consumption in relation to sleep traits (e.g., insomnia, snoring, sleep duration and chronotype) remain undefined, and their causality is still unclear in the general population. To identify the association between alcohol consumption and multiple sleep traits using an observational and Mendelian randomization (MR) design. Observational analyses and one-sample MR (linear and nonlinear) were performed using clinical and individual-level genetic data from the UK Biobank (UKB). Two-sample MR was assessed using summary data from genome-wide association studies from the UKB and other external consortia. Phenotype analyses were externally validated using data from the National Health and Nutrition Examination Survey (2017-2018). Data analysis was conducted from January 2022 to October 2022. The association between alcohol consumption and six self-reported sleep traits (short sleep duration, long sleep duration, chronotype, snoring, waking up in the morning, and insomnia) were analysed. This study included 383,357 UKB participants (mean [SD] age, 57.0 [8.0] years; 46% male) who consumed a mean (SD) of 9.0 (10.0) standard drinks (one standard drink equivalent to 14 g of alcohol) per week. In the observational analyses, alcohol consumption was significantly associated with all sleep traits. Light-moderate-heavy alcohol consumption was linearly linked to snoring and the evening chronotype but nonlinearly associated with insomnia, sleep duration, and napping. In linear MR analyses, a 1-SD (14 g) increase in genetically predicted alcohol consumption was associated with a 1.14-fold (95% CI, 1.07-1.22) higher risk of snoring (P < 0.001), a 1.28-fold (95% CI, 1.20-1.37) higher risk of evening chronotype (P < 0.001) and a 1.24-fold (95% CI, 1.13-1.36) higher risk of difficulty waking up in the morning (P < 0.001). Nonlinear MR analyses did not reveal significant results after Bonferroni adjustment. The results of the two-sample MR analyses were consistent with those of the one-sample MR analyses, but with a slightly attenuated overall estimate. Our findings suggest that even low levels of alcohol consumption may affect sleep health, particularly by increasing the risk of snoring and evening chronotypes. The negative effects of alcohol consumption on sleep should be made clear to the public in order to promote public health.

5.
Signal Transduct Target Ther ; 8(1): 441, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057315

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Post-Acute COVID-19 Syndrome , Clinical Relevance , SARS-CoV-2/genetics , RNA, Untranslated/genetics , Biomarkers
6.
Front Genet ; 14: 1309069, 2023.
Article in English | MEDLINE | ID: mdl-38075695

ABSTRACT

To explore the correlation and causality between multidimensional sleep traits and pan-cancer incidence and mortality among patients with cancer. The multivariable Cox regression, linear and nonlinear Mendelian randomization (MR), and survival curve analyses were conducted to assess the impacts of chronotype, sleep duration, and insomnia symptoms on pan-cancer risk (N = 326,417 from United Kingdom Biobank) and mortality (N = 23,956 from United Kingdom Biobank). In the Cox regression, we observed a linear and J-shaped association of sleep duration with pan-cancer incidence and mortality among cancer patients respectively. In addition, there was a positive association of insomnia with pan-cancer incidence (HR, 1.03, 95% CI: 1.00-1.06, p = 0.035), all-cause mortality (HR, 1.17, 95% CI: 1.06-1.30, p = 0.002) and cancer mortality among cancer patients (HR, 1.25, 95% CI: 1.11-1.41, p < 0.001). In the linear MR, there was supporting evidence of positive associations between long sleep duration and pan-cancer incidence (OR, 1.41, 95% CI: 1.08-1.84, p = 0.012), and there was a positive association between long sleep duration and all-cause mortality in cancer patients (OR, 5.56, 95% CI: 3.15-9.82, p = 3.42E-09). Meanwhile, a strong association between insomnia and all-cause mortality in cancer patients (OR, 1.41, 95% CI: 1.27-1.56, p = 4.96E-11) was observed in the linear MR. These results suggest that long sleep duration and insomnia play important roles in pan-cancer risk and mortality among cancer patients. In addition to short sleep duration and insomnia, our findings highlight the effect of long sleep duration in cancer prevention and prognosis.

7.
Biol Psychiatry Glob Open Sci ; 3(4): 1042-1052, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881587

ABSTRACT

Background: Many psychiatric disorders share a working memory (WM) impairment phenotype, yet the genetic causes remain unclear. Here, we generated genetic profiles of WM deficits using attention-deficit/hyperactivity disorder samples and validated the results in zebrafish models. Methods: We used 2 relatively large attention-deficit/hyperactivity disorder cohorts, 799 and 776 cases, respectively. WM impairment was assessed using the Rey Complex Figure Test. First, association analyses were conducted at single-variant, gene-based, and gene-set levels. Deeper insights into the biological mechanism were gained from further functional exploration by bioinformatic analyses and zebrafish models. Results: Genomic analyses identified and replicated a locus with rs75885813 as the index single nucleotide polymorphism showing significant association with WM defects but not with attention-deficit/hyperactivity disorder. Functional feature exploration found that these single nucleotide polymorphisms may regulate the expression level of RBFOX1 through chromatin interaction. Further pathway enrichment analysis of potential associated single nucleotide polymorphisms revealed the involvement of posttranscription regulation that affects messenger RNA stability and/or alternative splicing. Zebrafish with functionally knocked down or genome-edited rbfox1 exhibited WM impairment but no hyperactivity. Transcriptome profiling of rbfox1-defective zebrafish indicated that alternative exon usages of snap25a might partially lead to reduced WM learning of larval zebrafish. Conclusions: The locus with rs75885813 in RBFOX1 was identified as associated with WM. Rbfox1 regulates synaptic and long-term potentiation-related gene snap25a to adjust WM at the posttranscriptional level.

8.
Behav Brain Funct ; 19(1): 14, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658396

ABSTRACT

OBJECTIVE: Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS: The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS: Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS: Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Depressive Disorder, Major , Child , Humans , Memory, Short-Term , Eye , Memory Disorders
11.
Hum Brain Mapp ; 44(8): 3112-3122, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36919400

ABSTRACT

It remains challenging to identify depression accurately due to its biological heterogeneity. As people suffering from depression are associated with functional brain network alterations, we investigated subtypes of patients with first-episode drug-naive (FEDN) depression based on brain network characteristics. This study included data from 91 FEDN patients and 91 matched healthy individuals obtained from the International Big-Data Center for Depression Research. Twenty large-scale functional connectivity networks were computed using group information guided independent component analysis. A multivariate unsupervised normative modeling method was used to identify subtypes of FEDN and their associated networks, focusing on individual-level variability among the patients for quantifying deviations of their brain networks from the normative range. Two patient subtypes were identified with distinctive abnormal functional network patterns, consisting of 10 informative connectivity networks, including the default mode network and frontoparietal network. 16% of patients belonged to subtype I with larger extreme deviations from the normal range and shorter illness duration, while 84% belonged to subtype II with weaker extreme deviations and longer illness duration. Moreover, the structural changes in subtype II patients were more complex than the subtype I patients. Compared with healthy controls, both increased and decreased gray matter (GM) abnormalities were identified in widely distributed brain regions in subtype II patients. In contrast, most abnormalities were decreased GM in subtype I. The informative functional network connectivity patterns gleaned from the imaging data can facilitate the accurate identification of FEDN-MDD subtypes and their associated neurobiological heterogeneity.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging , Cerebral Cortex , Brain Mapping
12.
J Affect Disord ; 327: 217-225, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36736793

ABSTRACT

BACKGROUND: The heterogeneity of the clinical symptoms and presumptive neural pathologies has stunted progress toward identifying reproducible biomarkers and limited therapeutic interventions' effectiveness for the first episode drug-naïve major depressive disorders (FEDN-MDD). This study combined the dynamic features of fMRI data and normative modeling to quantitative and individualized metrics for delineating the biological heterogeneity of FEDN-MDD. METHOD: Two hundred seventy-four adults with FEDN-MDD and 832 healthy controls from International Big-Data Center for Depression Research were included. Subject-specific dynamic brain networks and network fluctuation characteristics were computed for each subject using the group information-guided independent component analysis. Then, we mapped the heterogeneity of the dynamic features (network fluctuation characteristics and dynamic functional connectivity within brain networks) in the patients group via normative modeling. RESULTS: The FEDN-MDD whose network fluctuation characteristics deviate from the normative model also showed significant differences within the default mode network, executive control network, and limbic network compared with healthy controls. Furthermore, the network fluctuation characteristics are significantly increased in patients with FEDN-MDD. About 4.74 % of the patients showed a deviation of dynamic functional connectivity, and only 3.35 % of the controls deviated from the normative model in above 100 connectivities. More patients than healthy controls showed extreme dynamic variabilities in above 100 connectivities. CONCLUSIONS: This work evaluates the efficacy of an individualized approach based on normative modeling for understanding the heterogeneity of abnormal dynamic functional connectivity patterns in FEDN-MDD, and could be used as complementary to classical case-control comparisons.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Depression , Neural Pathways , Brain , Brain Mapping , Magnetic Resonance Imaging
13.
Biol Psychiatry ; 93(4): 342-351, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36241462

ABSTRACT

BACKGROUND: Negative life events (NLEs) increase the risk for externalizing behaviors (EBs) and internalizing behaviors (IBs) in adolescence and adult psychopathology. DNA methylation associated with behavioral problems may reflect this risk and long-lasting effects of NLEs. METHODS: To identify consistent associations between blood DNA methylation and EBs or IBs across adolescence, we conducted longitudinal epigenome-wide association studies (EWASs) using data from the IMAGEN cohort, collected at ages 14 and 19 years (n = 506). Significant findings were validated in a separate subsample (n = 823). Methylation risk scores were generated by 10-fold cross-validation and further tested for their associations with gray matter volumes and NLEs. RESULTS: No significant findings were obtained for the IB-EWAS. The EB-EWAS identified a genome-wide significant locus in a gene linked to attention-deficit/hyperactivity disorder (ADHD) (IQSEC1, cg01460382; p = 1.26 × 10-8). Other most significant CpG sites were near ADHD-related genes and enriched for genes regulating tumor necrosis factor and interferon-γ signaling, highlighting the relevance of EB-EWAS findings for ADHD. Analyses with the EB methylation risk scores suggested that it partly reflected comorbidity with IBs in late adolescence. Specific to EBs, EB methylation risk scores correlated with smaller gray matter volumes in medial orbitofrontal and anterior/middle cingulate cortices, brain regions known to associate with ADHD and conduct problems. Longitudinal mediation analyses indicated that EB-related DNA methylation were more likely the outcomes of problematic behaviors accentuated by NLEs, and less likely the epigenetic bases of such behaviors. CONCLUSIONS: Our findings suggest that novel epigenetic mechanisms through which NLEs exert short and longer-term effects on behavior may contribute to ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Problem Behavior , Adolescent , Humans , Young Adult , Attention Deficit Disorder with Hyperactivity/genetics , Brain/pathology , DNA Methylation , Gray Matter/diagnostic imaging , Gray Matter/pathology
14.
BMC Psychiatry ; 22(1): 835, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581819

ABSTRACT

BACKGROUND: Subclinical anxiety, depressive and somatic symptoms appear closely related. However, it remains unclear whether somatic symptoms mediate the association between subclinical anxiety and depressive symptoms and what the underlying neuroimaging mechanisms are for the mediating effect. METHODS: Data of healthy participants (n = 466) and participants in remission of major depressive disorder (n = 53) were obtained from the Human Connectome Project. The Achenbach Adult Self-Report was adopted to assess anxiety, depressive and somatic symptoms. All participants completed four runs of resting-state functional magnetic resonance imaging. Mediation analyses were utilized to explore the interactions among these symptoms and their neuroimaging mechanisms. RESULTS: Somatic symptoms partially mediated the association between subclinical anxiety and depressive symptoms in healthy participants (anxiety→somatic→depression: effect: 0.2785, Boot 95% CI: 0.0958-0.3729; depression→somatic→anxiety: effect: 0.0753, Boot 95% CI: 0.0232-0.1314) and participants in remission of MDD (anxiety→somatic→depression: effect: 0.2948, Boot 95% CI: 0.0357-0.7382; depression→somatic→anxiety: effect: 0.0984, Boot 95% CI: 0.0007-0.2438). Resting-state functional connectivity (FC) between the right medial superior frontal gyrus and the left thalamus and somatic symptoms as chain mediators partially mediated the effect of subclinical depressive symptoms on subclinical anxiety symptoms in healthy participants (effect: 0.0020, Boot 95% CI: 0.0003-0.0043). The mean strength of common FCs of subclinical depressive and somatic symptoms, somatic symptoms, and the mean strength of common FCs of subclinical anxiety and somatic symptoms as chain mediators partially mediated the effect of subclinical depressive symptoms on subclinical anxiety symptoms in remission of MDD (effect: 0.0437, Boot 95% CI: 0.0024-0.1190). These common FCs mainly involved the insula, precentral gyri, postcentral gyri and cingulate gyri. Furthermore, FC between the triangular part of the left inferior frontal gyrus and the left postcentral gyrus was positively associated with subclinical anxiety, depressive and somatic symptoms in remission of MDD (FDR-corrected p < 0.01). CONCLUSIONS: Somatic symptoms partially mediate the interaction between subclinical anxiety and depressive symptoms. FCs involving the right medial superior frontal gyrus, left thalamus, triangular part of left inferior frontal gyrus, bilateral insula, precentral gyri, postcentral gyri and cingulate gyri maybe underlie the mediating effect of somatic symptoms.


Subject(s)
Connectome , Depressive Disorder, Major , Medically Unexplained Symptoms , Adult , Humans , Depressive Disorder, Major/complications , Depressive Disorder, Major/diagnostic imaging , Depression/complications , Depression/diagnostic imaging , Magnetic Resonance Imaging/methods , Anxiety/complications , Anxiety/diagnostic imaging , Brain/diagnostic imaging
15.
J Psychiatr Res ; 155: 511-517, 2022 11.
Article in English | MEDLINE | ID: mdl-36191519

ABSTRACT

Major depressive disorder (MDD), insomnia (INS) and chronic pain (CP) often have high comorbidity and show high genetic correlation. Here we aimed to better characterize their novel, shared and disorder-specific genetic architecture. Based on genome-wide association study (GWAS) summary data, we applied the conditional false discovery rate (condFDR) and conjunctional FDR (conjFDR) approach to investigate the novel and overlapped genetic loci for MDD, INS and CP. In addition, putative disorder-specific SNP associations were analyzed by conditioning the other two traits. The functions of the identified genomic loci were explored by performing gene set enrichment analysis (GSEA) for the loci mapped genes. We identified 22, 43 and 91 novel risk loci for MDD, INS and CP. GSEA for the loci mapped genes highlighted olfactory signaling pathway for MDD novel loci, breast cancer related gene set for both INS and CP novel loci, and nervous system related development, structure and activity for CP. Furthermore, we identified three loci jointly associated with the three disorders, including 13q14.3 locus with nearby gene OLFM4, 14q21.1 locus with nearby gene LRFN5 and 5q21.2 locus located in intergenic region. In addition, we identified one specific loci for MDD, 7 for INS and 11 for CP respectively by conditioning the other two traits, which were mapped to 68 genes for MDD, 85 for INS and 100 for CP. The MDD specific genes are enriched in immune system related pathways. This study increases understanding of the genetic architectures underlying MDD, INS and CP. The shared underlying genetic risk may help to explain the high comorbidity rates of the disorders.


Subject(s)
Chronic Pain , Depressive Disorder, Major , Sleep Initiation and Maintenance Disorders , Chronic Pain/genetics , DNA, Intergenic , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics , Sleep Initiation and Maintenance Disorders/genetics
16.
Front Mol Neurosci ; 15: 839233, 2022.
Article in English | MEDLINE | ID: mdl-35493321

ABSTRACT

Increasing evidence has indicated that circular RNAs (circRNAs) act as competing endogenous RNAs (ceRNAs) regulatory network to regulate the expression of target genes by sponging microRNAs (miRNAs), and therefore play an essential role in many neuropsychiatric disorders, including cocaine use disorder. However, the functional roles and regulatory mechanisms of circRNAs as ceRNAs in dorsolateral prefrontal cortex (dlPFC) of patients with cocaine use disorder remain to be determined. In this study, an expression profiling for dlPFC in 19 patients with cocaine use disorder and 17 controls from Gene Expression Omnibus datasets was used for the differentially expressed circRNAs analysis and the differentially expressed mRNAs analysis. Several tools were used to predict the miRNAs targeted by the circRNAs and the miRNAs targeted mRNAs, which then overlapped with the cocaine-associated differentially expressed mRNAs to determine the functional roles of circRNAs. Functional analysis for the obtained mRNAs was performed via Gene Ontology (GO) in Metascape database. Integrated bioinformatics analysis was conducted to further characterize the circRNA-miRNA-mRNA regulatory network and identify the functions of distinct circRNAs. We found a total of 41 differentially expressed circRNAs, and 98 miRNAs were targeted by these circRNAs. The overlapped mRNAs targeted by the miRNAs and the differentially expressed mRNAs constructed a circRNA-miRNA-mRNA regulation network including 24 circRNAs, 43 miRNAs, and 82 mRNAs in the dlPFC of patients with cocaine use disorder. Functional analysis indicated the regulation network mainly participated in cell response-related, receptor signaling-related, protein modification-related and axonogenesis-related pathways, which might be involved with cocaine use disorder. Additionally, we determined four hub genes (HSP90AA1, HSPA1B, YWHAG, and RAB8A) from the protein-protein interaction network and constructed a circRNA-miRNA-hub gene subnetwork based on the four hub genes. In conclusion, our findings provide a deeper understanding of the circRNAs-related ceRNAs regulatory mechanisms in the pathogenesis of cocaine use disorder.

17.
Transl Psychiatry ; 12(1): 199, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35550503

ABSTRACT

Perceived stress impairs cognitive function across the adult lifespan, but the extent to which cognition decline is variable across individuals. Individual differences in the stress response are described as personality traits. Substantial individual differences in the magnitude of cognitive impairment that is induced by short-term perceived stress are poorly understood. The present study tested the hypothesis that the relationship between short-term perceived stress and different aspects of cognition is mediated by personality traits. The study included 1066 participants with behavior and neuroimaging data from the Human Connectome Project after excluding individuals with missing variables. In the result, the parallel multiple mediation model demonstrated that the influence of perceived stress on the total and crystalized cognition is mainly mediated by neuroticism (indirect effect = -0.04, p < 0.05) and conscientiousness (indirect effect = 0.05, p < 0.05) in adults. Cortical thickness value (n = 1066) of the right superior frontal gyrus (SFG) showed not only positive correlations with short-term perceived stress and neuroticism, but negative associations with cognition. The chain mediation model found that the right SFG and neuroticism play a small but significant chain mediating effect between stress and total cognition. The strength of the resting-state functional connectivity (n = 968) between the left orbitofrontal cortex versus the left superior medial frontal cortex was positively correlated with crystallized cognition and negatively associated with conscientiousness. These results extend previous findings by the impacts of short-term perceived stress on cognitive function is mediated by neuroticism and the right SFG was the underlying neural mechanism.


Subject(s)
Cognition , Personality , Adult , Humans , Magnetic Resonance Imaging , Neuroticism , Personality/physiology , Prefrontal Cortex , Stress, Psychological/diagnostic imaging
18.
Addiction ; 117(9): 2515-2529, 2022 09.
Article in English | MEDLINE | ID: mdl-35491750

ABSTRACT

BACKGROUND AND AIMS: Genomic and transcriptomic findings greatly broaden the biological knowledge regarding substance use. However, systematic convergence and comparison evidence of genome-wide findings is lacking for substance use. Here, we combined all the genome-wide findings from both substance use behavior and disorder (SUBD) and identified common and distinguishing genetic factors for different SUBDs. METHODS: Systemic literature search for genome-wide association (GWAS) and RNA-seq studies of alcohol/nicotine/drug use behavior (partially meets or not reported diagnostic criteria) and alcohol use behavior and disorder (AUBD), nicotine use behavior and disorder (NUBD) and drug use behavior and disorder (DUBD) was performed using PubMed and the GWAS catalog. Drug use was focused upon cannabis, opioid, cocaine and methamphetamine use. GWAS studies required case-control or case/cohort samples. RNA-seq studies were based on brain tissues. The genes which contained significant single nucleotide polymorphism (P ≤ 1 × 10-6 ) in GWAS and reported as significant in RNA-seq studies were extracted. Pathway enrichment was performed by using Metascape. Gene interaction networks were identified by using the Protein Interaction Network Analysis database. RESULTS: Total SUBD-related 2910 genes were extracted from 75 GWAS studies (2 773 889 participants) and 17 RNA-seq studies. By overlapping the genes and pathways of AUBD, NUBD and DUBD, four shared genes (CACNB2, GRIN2B, PLXDC2 and PKNOX2), four shared pathways [two Gene Ontology (GO) terms of 'modulation of chemical synaptic transmission', 'regulation of trans-synaptic signaling', two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 'dopaminergic synapse', 'cocaine addiction'] were identified (significantly higher than random, P < 1 × 10-5 ). The top shared KEGG pathways (Benjamini-Hochberg-corrected P-value < 0.05) in the pairwise comparison of AUBD versus DUBD, NUBD versus DUBD, AUBD versus NUBD were 'Epstein-Barr virus infection', 'protein processing in endoplasmic reticulum' and 'neuroactive ligand-receptor interaction', respectively. We also identified substance-specific genetic factors: i.e. ADH1B and ALDH2 were unique for AUBD, while CHRNA3 and CHRNA4 were unique for NUBD. CONCLUSIONS: This systematic review identifies the shared and unique genes and pathways for alcohol, nicotine and drug use behaviors and disorders at the genome-wide level and highlights critical biological processes for the common and distinguishing vulnerability of substance use behaviors and disorders.


Subject(s)
Cocaine , Epstein-Barr Virus Infections , Substance-Related Disorders , Tobacco Use Disorder , Aldehyde Dehydrogenase, Mitochondrial/genetics , Animals , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Nicotine/metabolism , Polymorphism, Single Nucleotide , Substance-Related Disorders/genetics , Tobacco Use Disorder/genetics , Transcriptome
19.
Front Psychiatry ; 13: 874090, 2022.
Article in English | MEDLINE | ID: mdl-35401246

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a lifelong condition. Autistic symptoms can persist into adulthood. Studies have reported that autistic symptoms generally improved in adulthood, especially restricted and repetitive behaviors and interests (RRBIs). We explored brain networks that are related to differences in RRBIs in individuals with ASDs among different ages. Methods: We enrolled 147 ASD patients from the Autism Brain Imaging Data Exchange II (ABIDEII) database. The participants were divided into four age groups: children (6-9 years old), younger adolescents (10-14 years old), older adolescents (15-19 years old), and adults (≥20 years old). RRBIs were evaluated using the Repetitive Behaviors Scale-Revised 6. We first explored differences in RRBIs between age groups using the Kruskal-Wallis test. Associations between improvements in RRBIs and age were analyzed using a general linear model. We then analyzed RRBIs associated functional connectivity (FC) links using the network-based statistic method by adjusting covariates. The association of the identified FC with age group, and mediation function of the FC on the association of age-group and RRBI were further analyzed. Results: Most subtypes of RRBIs improved with age, especially stereotyped behaviors, ritualistic behaviors, and restricted behaviors (p = 0.012, 0.014, and 0.012, respectively). Results showed that 12 FC links were closely related to overall RRBIs, 17 FC links were related to stereotyped behaviors. Among the identified 29 FC links, 15 were negatively related to age-groups. The mostly reported core brain regions included superior occipital gyrus, insula, rolandic operculum, angular, caudate, and cingulum. The decrease in FC between the left superior occipital lobe and right angular (effect = -0.125 and -0.693, respectively) and between the left insula and left caudate (effect = -0.116 and -0.664, respectively) might contribute to improvements in multiple RRBIs with age. Conclusion: We identified improvements in RRBIs with age in ASD patients, especially stereotyped behaviors, ritualistic behaviors, and restricted behaviors. The decrease in FC between left superior occipital lobe and right angular and between left insula and left caudate might contribute to these improvements. Our findings improve our understanding of the pathogenesis of RRBIs and suggest potential intervention targets to improve prognosis in adulthood.

20.
Front Mol Neurosci ; 15: 845212, 2022.
Article in English | MEDLINE | ID: mdl-35283726

ABSTRACT

Background: Major depressive disorder (MDD) has become a leading cause of disability worldwide. However, the diagnosis of the disorder is dependent on clinical experience and inventory. At present, there are no reliable biomarkers to help with diagnosis and treatment. DNA methylation patterns may be a promising approach for elucidating the etiology of MDD and predicting patient susceptibility. Our overarching aim was to identify biomarkers based on DNA methylation, and then use it to propose a methylation prediction score for MDD, which we hope will help us evaluate the risk of breast cancer. Methods: Methylation data from 533 samples were extracted from the Gene Expression Omnibus (GEO) database, of which, 324 individuals were diagnosed with MDD. Statistical difference of DNA Methylation between Promoter and Other body region (SIMPO) score for each gene was calculated based on the DNA methylation data. Based on SIMPO scores, we selected the top genes that showed a correlation with MDD in random resampling, then proposed a methylation-derived Depression Index (mDI) by combining the SIMPO of the selected genes to predict MDD. A validation analysis was then performed using additional DNA methylation data from 194 samples extracted from the GEO database. Furthermore, we applied the mDI to construct a prediction model for the risk of breast cancer using stepwise regression and random forest methods. Results: The optimal mDI was derived from 426 genes, which included 245 positive and 181 negative correlations. It was constructed to predict MDD with high predictive power (AUC of 0.88) in the discovery dataset. In addition, we observed moderate power for mDI in the validation dataset with an OR of 1.79. Biological function assessment of the 426 genes showed that they were functionally enriched in Eph Ephrin signaling and beta-catenin Wnt signaling pathways. The mDI was then used to construct a predictive model for breast cancer that had an AUC ranging from 0.70 to 0.67. Conclusion: Our results indicated that DNA methylation could help to explain the pathogenesis of MDD and assist with its diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...