Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Intern Med ; 38(3): 1718-1724, 2024.
Article in English | MEDLINE | ID: mdl-38666546

ABSTRACT

BACKGROUND: Cats in respiratory distress have limited tolerance for manipulation, hindering clinical monitoring. Minute volume (MV) can be utilized to rate dyspnea in humans, but its relationship with respiratory distress in cats remains poorly investigated. HYPOTHESIS: Cats with respiratory distress will show higher MV per kg body weight (MV/BW) than normal cats, and the MV/BW increase will correlate with survival. ANIMALS: Fifty-two cats with respiratory distress from lung parenchymal disease, pleural space disease, lower airway obstruction (LAO), or upper airway obstruction were recruited since 2014. METHODS: This is a prospective observational study. Study cats were placed in a transparent chamber, allowing clinicians to easily observe their breathing status and record ventilation using barometric whole-body plethysmography (BWBP). Ventilatory variables of the 52 cats were compared with those of 14 historic control cats. Follow-up data, including disease category, clinical outcomes, and survival, were prospectively collected. RESULTS: Cats in respiratory distress demonstrated significantly higher MV/BW (397 mL/kg; range, 158-1240) than normal cats (269 mL/kg; range, 168-389; P < .001). Among the etiologies, cats with LAO, parenchymal, and pleural space disease exhibited higher-than-normal MV/BW trends. A cutoff value of 373 mL/kg (1.4-fold increase) indicated abnormally increased breathing efforts (sensitivity, 67%; specificity, 93%). MV/BW was independently associated with increased cardiorespiratory mortality in cats with respiratory distress (adjusted hazard ratio 1.17, 95% confidence interval [CI] 1.02-1.35; P = .03). CONCLUSIONS AND CLINICAL IMPORTANCE: Breathing efforts in cats can be noninvasively quantified using BWBP. Measurement of MV/BW could serve as a prognostic index for monitoring cats experiencing respiratory distress.


Subject(s)
Cat Diseases , Plethysmography, Whole Body , Animals , Cats , Cat Diseases/physiopathology , Cat Diseases/diagnosis , Male , Female , Prospective Studies , Plethysmography, Whole Body/veterinary , Prognosis , Respiration
2.
Animals (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672364

ABSTRACT

The premortem understanding of the role of feline coronavirus (FeCoV) in the lungs of cats is limited as viruses are seldom inspected in the bronchoalveolar lavage (BAL) specimens of small animal patients. This study retrospectively analyzed the prevalence of FeCoV in BAL samples from cats with atypical lower airway and lung disease, as well as the clinical characteristics, diagnostic findings, and follow-up information. Of 1162 clinical samples submitted for FeCoV RT-nPCR, 25 were BAL fluid. After excluding 1 case with chronic aspiration, FeCoV was found in 3/24 (13%) BAL specimens, with 2 having immunofluorescence staining confirming the presence of FeCoV within the cytoplasm of alveolar macrophages. The cats with FeCoV in BAL fluid more often had pulmonary nodular lesions (66% vs. 19%, p = 0.14) and multinucleated cells on cytology (100% vs. 48%, p = 0.22) compared to the cats without, but these differences did not reach statistical significance due to the small sample size. Three cats showed an initial positive response to the corticosteroid treatment based on the clinical signs and radiological findings, but the long-term prognosis varied. The clinical suspicion of FeCoV-associated pneumonia or pneumonitis was raised since no other pathogens were found after extensive investigations. Further studies are warranted to investigate the interaction between FeCoV and lung responses in cats.

3.
Vet Q ; 43(1): 1-10, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37616027

ABSTRACT

Dynamic lower airway obstruction is the primary component of canine bronchomalacia, but the ventilatory function remains underinvestigated. This prospective study analyzed tidal breathing characteristics in 28 dogs, comprising 14 with severe bronchomalacia diagnosed by bronchoscopy versus 14 without respiratory disease. Spirometry was conducted in all dogs. Bronchoscopy with bronchoalveolar lavage or brush under anesthesia was performed in 14 dogs with cough and expiratory effort. Severe bronchomalacia was defined by the severity of collapse and total number of bronchi affected. Ventilatory characteristics were compared between groups. Results revealed that dogs with severe bronchomalacia had lower minute volume (218 vs 338 mL/kg, p = .039) and greater expiratory-to-inspiratory time ratio (1.55 vs 1.35, p = .01) compared to control dogs. The tidal breathing pattern of dogs with bronchomalacia was different from that of normal dogs, and the pattern differed from the concave or flat expiratory curves typical of lower airway obstruction. Compared to control dogs, dogs with severe bronchomalacia had a significantly prolonged low-flow expiratory phase (p < .001) on the flow-time plot and a more exponential shape of the expiratory curve (p < .001) on the volume-time plot. Flow-time index ExpLF/Te (>0.14) and volume-time index Vt-AUCexp (≤31%) had a high ROC-AUC (1.00, 95% confidence interval 0.88 to 1.00) in predicting severe bronchomalacia. In conclusion, the tidal breathing pattern identified here indicates abnormal and complicated ventilatory mechanics in dogs with severe bronchomalacia. The role of this pulmonary functional phenotype should be investigated for disease progression and therapeutic monitoring in canine bronchomalacia.


Subject(s)
Airway Obstruction , Bronchomalacia , Dog Diseases , Dogs , Animals , Bronchomalacia/diagnosis , Bronchomalacia/veterinary , Bronchoscopy/veterinary , Prospective Studies , Respiration , Airway Obstruction/diagnosis , Airway Obstruction/veterinary , Phenotype , Dog Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...