Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 22(1): 9, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747170

ABSTRACT

BACKGROUND: Impairments of trunk movements in gait of stroke are often reported. Ankle foot orthosis (AFO) is commonly used to improve gait of stroke; however, the effect of different types of AFOs on the pelvic and thoracic movements during gait in stroke has not been clarified. METHODS: Thirty-four patients with stroke were randomly allocated to undergo 2 weeks of gait training by physiotherapists while wearing a rigid AFO (RAFO) with a fixed ankle or an AFO with an oil damper (AFO-OD) that provides plantarflexion resistance and free dorsiflexion. A motion capture system was used for measurements of shod gait without AFO at baseline and with and without AFO after gait training. Two-way repeated ANOVA, Wilcoxon signed-rank test, and Mann-Whitney U test were performed for the data after the gait training to know the effect of different kinds of AFOs. RESULTS: Twenty-nine patients completed the study (AFO-OD group: 14, RAFO group: 15). Interactions were found in pelvic rotation angle, change of shank-to-vertical angle (SVA) in the stance, and paretic to non-paretic step length, which increased in AFO-OD group with AFOs (p < 0.05), while the SVA decreased in RAFO group with AFOs (p < 0.05). The main effects were found in pelvic rotation at the contralateral foot off, and thoracic tilt at foot off when an AFO was worn. The change of SVA in stance was positively correlated with the pelvic rotation in the AFO-OD group (r = 0.558). At initial contact, pelvic rotation was positively correlated with thoracic rotation in both groups. CONCLUSIONS: The findings in 29 patients with stroke showed that pelvic and thoracic movements especially the rotation were affected by the type of AFOs. Pelvic rotation and lower limb kinematics exhibited significant improvements with AFO-OD, reflecting more desirable gait performance. On the other hand, the increase in thoracic in-phase rotation might expose the effect of insufficient trunk control and dissociation movement. Trial registration UMIN000038694, Registered 21 November 2019, https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_his_list.cgi?recptno=R000044048 .


Subject(s)
Foot Orthoses , Stroke Rehabilitation , Stroke , Humans , Ankle , Ankle Joint , Biomechanical Phenomena , Gait , Range of Motion, Articular , Stroke/complications , Stroke/therapy
2.
Front Bioeng Biotechnol ; 10: 965295, 2022.
Article in English | MEDLINE | ID: mdl-36237219

ABSTRACT

The four-point kneeling exercise is a core stabilization exercise that provides the spine with dynamic stability and neuromuscular control. In the traditional Chinese exercise Wuqinxi, deer play is performed in a hand-foot kneeling (HFK) position, which is remarkably similar to the four-point hand-knee kneeling (HKK) position. However, the differences in spinal function promotion between these two positions are poorly understood. The aim of this study was to investigate muscle activation patterns and spinal kinematics during specific core stabilization training to provide evidence for selecting specific exercises. A total of 19 healthy adults were recruited to perform HFK and HKK. The rotation angle of the C7-T4 vertebra and the surface EMG signals of abdominal and lumbar muscles on both sides were collected. The paired t-test showed that the vertebral rotation angles were significantly higher during HKK than HFK, and the intra-group differences mainly occurred at the level of the thoracic vertebra. The muscle activation of both sides of the rectus abdominis and external oblique in HFK was significantly higher than in HKK when the upper limb was lifted (p < 0.05). The activation of the ipsilateral lumbar multifidus and erector spinae muscles was significantly higher during the HKK position than during HFK when the lower limb was lifted (p < 0.05). HFK provided more training for strengthening abdominal muscles, while HKK could be recommended for strengthening lumbar muscles and increasing spine mobility. These findings can be used to help physiotherapists, fitness coaches, and others to select specific core exercises and develop individualized training programs.

3.
Front Neurol ; 12: 746599, 2021.
Article in English | MEDLINE | ID: mdl-34721273

ABSTRACT

The one-leg stance is frequently used in balance training and rehabilitation programs for various balance disorders. There are some typical one-leg stance postures in Tai Chi (TC) and yoga, which are normally used for improving balance. However, the mechanism is poorly understood. Besides, the differences of one-leg stance postures between TC and yoga in training balance are still unknown. Therefore, the aim of the present study was to investigate cortical activation and rambling and trembling trajectories to elucidate the possible mechanism of improving one-leg stance balance, and compare the postural demands during one-leg stance postures between TC and yoga. Thirty-two healthy young individuals were recruited to perform two TC one-leg stance postures, i.e., right heel kick (RHK) and left lower body and stand on one leg (LSOL), two yoga postures, i.e., one-leg balance and Tree, and normal one-leg standing (OLS). Brain activation in the primary motor cortex, supplementary motor area (SMA), and dorsolateral prefrontal cortex (DLPFC) was measured using functional near-infrared spectroscopy. The center of pressure was simultaneously recorded using a force platform and decomposed into rambling and trembling components. One-way repeated-measures analysis of variance was used for the main effects. The relative concentration changes of oxygenated hemoglobin (ΔHbO) in SMA were significantly higher during RHK, LSOL, and Tree than that during OLS (p < 0.001). RHK (p < 0.001), LSOL (p = 0.003), and Tree (p = 0.006) all showed significantly larger root mean square rambling (RmRMS) than that during OLS in the medial-lateral direction. The right DLPFC activation was significantly greater during the RHK than that during the Tree (p = 0.023), OLB (p < 0.001), and OLS (p = 0.013) postures. In conclusion, the RHK, LSOL, and Tree could be used as training movements for people with impaired balance. Furthermore, the RHK in TC may provide more cognitive training in postural control than Tree and OLB in yoga. Knowledge from this study could be used and implemented in training one-leg stance balance.

SELECTION OF CITATIONS
SEARCH DETAIL
...