Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nano Converg ; 11(1): 21, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789878

ABSTRACT

Dimensional modifications play a crucial role in various applications, especially in the context of device miniaturization, giving rise to novel quantum phenomena. The many-body dynamics induced by dimensional modifications, including electron-electron, electron-phonon, electron-magnon and electron-plasmon coupling, are known to significantly affect the atomic and electronic properties of the materials. By reducing the dimensionality of orthorhombic CoSe2 and forming heterostructure with bilayer graphene using molecular beam epitaxy, we unveil the emergence of two types of phase transitions through angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements. We disclose that the 2 × 1 superstructure is associated with charge density wave induced by Fermi surface nesting, characterized by a transition temperature of 340 K. Additionally, another phase transition at temperature of 160 K based on temperature dependent gap evolution are observed with renormalized electronic structure induced by electron-boson coupling. These discoveries of the electronic and atomic modifications, influenced by electron-electron and electron-boson interactions, underscore that many-body physics play significant roles in understanding low-dimensional properties of non-van der Waals Co-chalcogenides and related heterostructures.

2.
Sci Rep ; 14(1): 9476, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658634

ABSTRACT

Interfacial magnetic interactions between different elements are the origin of various spin-transport phenomena in multi-elemental magnetic systems. We investigate the coupling between the magnetic moments of the rare-earth, transition-metal, and heavy-metal elements across the interface in a GdFeCo/Pt thin film, an archetype system to investigate ferrimagnetic spintronics. The Pt magnetic moments induced by the antiferromagnetically aligned FeCo and Gd moments are measured using element-resolved x-ray measurements. It is revealed that the proximity-induced Pt magnetic moments are always aligned parallel to the FeCo magnetic moments, even below the ferrimagnetic compensation temperature where FeCo has a smaller moment than Gd. This is understood by a theoretical model showing distinct effects of the rare-earth Gd 4f and transition-metal FeCo 3d magnetic moments on the Pt electronic states. In particular, the Gd and FeCo work in-phase to align the Pt moment in the same direction, despite their antiferromagnetic configuration. The unexpected additive roles of the two antiferromagnetically coupled elements exemplify the importance of detailed interactions among the constituent elements in understanding magnetic and spintronic properties of thin film systems.

3.
Nanoscale Adv ; 5(20): 5513-5519, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37822900

ABSTRACT

Understanding the characteristics of intrinsic defects in crystals is of great interest in many fields, from fundamental physics to applied materials science. Combined investigations of scanning tunneling microscopy/spectroscopy (STM/S) and density functional theory (DFT) are conducted to understand the nature of Se vacancy defects in monolayer (ML) ReSe2 grown on a graphene substrate. Among four possible Se vacancy sites, we identify the Se4 vacancy close to the Re layer by registry between STM topography and DFT simulated images. The Se4 vacancy is also thermodynamically favored in formation energy calculations, supporting its common observation via STM. dI/dV spectroscopy shows that the Se4 vacancy has a defect state at around -1.0 V, near the valence band maximum (EVBM). DOS calculations done for all four Se vacancies indicate that only the Se4 vacancy presents such a defect state near EVBM, confirming experimental observations. Our work provides valuable insights into the behavior of ML ReSe2/graphene heterojunctions containing naturally occurring Se vacancies, which may have strong implications in electronic device applications.

4.
Nano Converg ; 10(1): 10, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36806667

ABSTRACT

In situ reflective high-energy electron diffraction (RHEED) is widely used to monitor the surface crystalline state during thin-film growth by molecular beam epitaxy (MBE) and pulsed laser deposition. With the recent development of machine learning (ML), ML-assisted analysis of RHEED videos aids in interpreting the complete RHEED data of oxide thin films. The quantitative analysis of RHEED data allows us to characterize and categorize the growth modes step by step, and extract hidden knowledge of the epitaxial film growth process. In this study, we employed the ML-assisted RHEED analysis method to investigate the growth of 2D thin films of transition metal dichalcogenides (ReSe2) on graphene substrates by MBE. Principal component analysis (PCA) and K-means clustering were used to separate statistically important patterns and visualize the trend of pattern evolution without any notable loss of information. Using the modified PCA, we could monitor the diffraction intensity of solely the ReSe2 layers by filtering out the substrate contribution. These findings demonstrate that ML analysis can be successfully employed to examine and understand the film-growth dynamics of 2D materials. Further, the ML-based method can pave the way for the development of advanced real-time monitoring and autonomous material synthesis techniques.

6.
Nano Converg ; 10(1): 2, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36625963

ABSTRACT

The interplay between ferromagnetism and the non-trivial topology has unveiled intriguing phases in the transport of charges and spins. For example, it is consistently observed the so-called topological Hall effect (THE) featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a topological insulator (TI). The origin of the hump structure is still controversial between the topological Hall effect model and the multi-component anomalous Hall effect (AHE) model. In this work, we have investigated a heterostructure consisting of BixSb2-xTeySe3-y (BSTS) and Cr2Te3 (CT), which are well-known TI and two-dimensional FM, respectively. By using the so-called "minor-loop measurement", we have found that the hump structure observed in the CT/BSTS is more likely to originate from two AHE channels. Moreover, by analyzing the scaling behavior of each amplitude of two AHE with the longitudinal resistivities of CT and BSTS, we have found that one AHE is attributed to the extrinsic contribution of CT while the other is due to the intrinsic contribution of BSTS. It implies that the proximity-induced ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE, resulting in the hump structure explained by the two AHE model.

7.
ACS Nano ; 16(7): 11227-11233, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35838605

ABSTRACT

NiTe2, a type-II Dirac semimetal with a strongly tilted Dirac band, has been explored extensively to understand its intriguing topological properties. Here, using density functional theory calculations, we report that the strength of the spin-orbit coupling (SOC) in NiTe2 can be tuned by Se substitution. This results in negative shifts of the bulk Dirac point (BDP) while preserving the type-II Dirac band. Indeed, combined studies using scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy confirm that the BDP in the NiTe2-xSex alloy moves from +0.1 eV (NiTe2) to -0.3 eV (NiTeSe) depending on the Se concentrations, indicating the effective tunability of type-II Dirac Fermions. Our results demonstrate an approach to tailor the type-II Dirac band in NiTe2 by controlling the SOC strength via chalcogen substitution. This approach can be applicable to different types of topological materials.

8.
Nanoscale Res Lett ; 17(1): 26, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35142901

ABSTRACT

Transition metal dichalcogenides have attracted renewed interest for use as thermoelectric materials owing to their tunable bandgap, moderate Seebeck coefficient, and low thermal conductivity. However, their thermoelectric parameters such as Seebeck coefficient, electrical conductivity, and thermal conductivity are interdependent, which is a drawback. Therefore, it is necessary to find a way to adjust one of these parameters without affecting the other parameters. In this study, we investigated the effect of helium ion irradiation on MoSe2 thin films with the objective of controlling the Seebeck coefficient and electrical conductivity. At the optimal irradiation dose of 1015 cm-2, we observed multiple enhancements of the power factor resulting from an increase in the electrical conductivity, with slight suppression of the Seebeck coefficient. Raman spectroscopy, X-ray diffraction, and transmission electron microscopy analyses revealed that irradiation-induced selenium vacancies played an important role in changing the thermoelectric properties of MoSe2 thin films. These results suggest that helium ion irradiation is a promising method to significantly improve the thermoelectric properties of two-dimensional transition metal dichalcogenides. Effect of He+ irradiation on thermoelectric properties of MoSe2 thin films.

9.
Nanotechnology ; 32(36)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34062520

ABSTRACT

A combined study of scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) is conducted to understand the multiple charge density wave (CDW) phases of monolayer (ML) VSe2films manifested by graphene substrates. Submonolayer (∼0.8 ML) VSe2films are prepared on two different substrates of single-layer graphene (SLG) and bi-layer graphene (BLG) on a 6H-SiC(0001). We find that ML VSe2films are less coupled to the SLG substrate compared to that of ML VSe2/BLG. Then, ML VSe2grown on SLG and BLG substrates reveals a very different topography in STM. While ML VSe2/BLG shows one unidirectional modulation of √3 × 2 and √3 × âˆš7 CDW in topography, ML VSe2/SLG presents a clear modulation of 4 × 1 CDW interfering with √3 × 2 and √3 × âˆš7 CDW which has not been previously observed. We explicitly show that the reciprocal vector of 4 × 1 CDW fits perfectly into the long parallel sections of cigar-shaped Fermi surfaces near the M point in ML VSe2, satisfying Fermi surface nesting. Since bulk VSe2is also well-known for the 4 × 4 × 3 CDW formed by Fermi surface nesting, the 4 × 1 CDW in ML VSe2/SLG is attributed to the planar projection of 4 × 4 × 3 CDW in bulk. Our result clarifies the nature of the 4 × 1 CDW in ML VSe2system and is a good example demonstrating the essential role of substrates in two-dimensional transition metal dichalcogenides.

10.
ACS Nano ; 15(4): 7756-7764, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33761743

ABSTRACT

Atomically thin vanadium diselenide (VSe2) is a two-dimensional transition metal dichalcogenide exhibiting attractive properties due to its metallic 1T phase. With the recent development of methods to manufacture high-quality monolayer VSe2 on van der Waals materials, the outstanding properties of VSe2-based heterostructures have been widely studied for diverse applications. Dimensional reduction and interlayer coupling with a van der Waals substrate lead to its distinguishable characteristics from its bulk counterparts. However, only a few fundamental studies have investigated the interlayer coupling effects and hot electron transfer dynamics in VSe2 heterostructures. In this work, we reveal ultrafast and efficient interlayer hot electron transfer and interlayer coupling effects in VSe2/graphene heterostructures. Femtosecond time-resolved reflectivity measurements showed that hot electrons in VSe2 were transferred to graphene within a 100 fs time scale with high efficiency. Besides, coherent acoustic phonon dynamics indicated interlayer coupling in VSe2/graphene heterostructures and efficient thermal energy transfer to three-dimensional substrates. Our results provide valuable insights into the intriguing properties of metallic transition metal dichalcogenide heterostructures and motivate designing optoelectronic and photonic devices with tailored properties.

11.
Nano Lett ; 21(5): 1968-1975, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33600187

ABSTRACT

The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron-lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.

12.
J Am Chem Soc ; 143(6): 2552-2557, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33439644

ABSTRACT

Catalytic enantioselective protonation of a prochiral carbanion in water is a common transformation in biological systems, but has been beyond the capability of synthetic chemists since unusually rapid movement of a proton in water leads to uncontrolled racemic protonation. Herein we show a crucial role of water, which enables a highly enantioselective glyoxalase I-mimic catalytic isomerization of hemithioacetals which proceeds via enantioselective protonation of an ene-diol intermediate. The use of on-water condition turns on this otherwise extremely unreactive catalytic reaction as a result of the strengthened hydrogen bonds of water molecules near the hydrophobic reaction mixture. Furthermore, under on-water conditions, especially under biphasic microfluidic on-water conditions, access of bulk water into the enantio-determining transition state is efficiently blocked, consequently enabling the enantioselective introduction of a highly ungovernable proton to a transient enediol intermediate, which mimics the action of enzymes.

13.
ACS Nano ; 14(7): 7880-7891, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32463224

ABSTRACT

Many properties of layered materials change as they are thinned from their bulk forms down to single layers, with examples including indirect-to-direct band gap transition in 2H semiconducting transition metal dichalcogenides as well as thickness-dependent changes in the valence band structure in post-transition-metal monochalcogenides and black phosphorus. Here, we use angle-resolved photoemission spectroscopy to study the electronic band structure of monolayer ReSe2, a semiconductor with a distorted 1T structure and in-plane anisotropy. By changing the polarization of incoming photons, we demonstrate that for ReSe2, in contrast to the 2H materials, the out-of-plane transition metal dz2 and chalcogen pz orbitals do not contribute significantly to the top of the valence band, which explains the reported weak changes in the electronic structure of this compound as a function of layer number. We estimate a band gap of 1.7 eV in pristine ReSe2 using scanning tunneling spectroscopy and explore the implications on the gap following surface doping with potassium. A lower bound of 1.4 eV is estimated for the gap in the fully doped case, suggesting that doping-dependent many-body effects significantly affect the electronic properties of ReSe2. Our results, supported by density functional theory calculations, provide insight into the mechanisms behind polarization-dependent optical properties of rhenium dichalcogenides and highlight their place among two-dimensional crystals.

14.
Nanoscale ; 11(42): 20096-20101, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31612892

ABSTRACT

Polymorphisms allowing multiple structural phases are among the most fascinating properties of transition metal dichalcogenides (TMDs). Herein, the polymorphic 1T' phase and its lattice dynamics for bilayer VSe2 grown on epitaxial bilayer graphene are investigated via low temperature scanning tunneling microscopy (STM). The 1T' structure, mostly observed in group-6 TMDs, is unexpected in VSe2, which is a group-5 TMD. Emergence of the 1T' structure in bilayer VSe2 suggests the important roles of interface and layer configurations, providing new possibilities regarding the polymorphism of TMDs. Detailed topographical analysis elucidates the microscopic nature of the 1T' structure, confirming that Se-like and V-like surfaces can be resolved depending on the polarity of the sample bias. In addition, bilayer VSe2 can transit from a static state of the 1T' phase to a dynamic state consisting of lattice vibrations, triggered by tunneling current from the STM tip. Topography also shows hysteretic behavior during the static-dynamic transition, which is attributed to latent energy existing between the two states. The observed lattice dynamics involve vibrational motion of the Se atoms and the middle V atoms. Our observations will provide important information to establish in-depth understanding of the microscopic nature of 1T' structures and the polymorphism of two-dimensional TMDs.

15.
Small ; 15(42): e1902528, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31482646

ABSTRACT

Transition metal dichalcogenides, as a kind of 2D material, are suitable for near-infrared to visible photodetection owing to the bandgaps ranging from 1.0 to 2.0 eV. However, limited light absorption restricts photoresponsivity due to the ultrathin thickness of 2D materials. 3D tubular structures offer a solution to solve the problem because of the light trapping effect which can enhance optical absorption. In this work, thanks to mechanical flexibility of 2D materials, self-rolled-up technology is applied to build up a 3D tubular structure and a tubular photodetector is realized based on the rolled-up molybdenum diselenide microtube. The tubular device is shown to present one order higher photosensitivity compared with planar counterparts. Enhanced optical absorption arising from the multiple reflections inside the tube is the main reason for the increased photocurrent. This tubular device offers a new design for increasing the efficiency of transition metal dichalcogenide-based photodetection and could hold great potential in the field of 3D optoelectronics.

16.
Nano Lett ; 18(9): 5432-5438, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30063833

ABSTRACT

Emergent phenomena driven by electronic reconstructions in oxide heterostructures have been intensively discussed. However, the role of these phenomena in shaping the electronic properties in van der Waals heterointerfaces has hitherto not been established. By reducing the material thickness and forming a heterointerface, we find two types of charge-ordering transitions in monolayer VSe2 on graphene substrates. Angle-resolved photoemission spectroscopy (ARPES) uncovers that Fermi-surface nesting becomes perfect in ML VSe2. Renormalization-group analysis confirms that imperfect nesting in three dimensions universally flows into perfect nesting in two dimensions. As a result, the charge-density wave-transition temperature is dramatically enhanced to a value of 350 K compared to the 105 K in bulk VSe2. More interestingly, ARPES and scanning tunneling microscopy measurements confirm an unexpected metal-insulator transition at 135 K that is driven by lattice distortions. The heterointerface plays an important role in driving this novel metal-insulator transition in the family of monolayer transition-metal dichalcogenides.

17.
Nanoscale Res Lett ; 12(1): 492, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28812234

ABSTRACT

We report on a temperature-dependent band gap property of epitaxial MoSe2 ultrathin films. We prepare uniform MoSe2 films epitaxially grown on graphenized SiC substrates with controlled thicknesses by molecular beam epitaxy. Spectroscopic ellipsometry measurements upon heating sample in ultra-high vacuum showed temperature-dependent optical spectra between room temperature to 850 °C. We observed a gradual energy shift of optical band gap depending on the measurement temperature for different film thicknesses. Fitting with the vibronic model of Huang and Rhys indicates that the constant thermal expansion accounts for the steady decrease of band gap. We also directly probe both optical and stoichiometric changes across the decomposition temperature, which should be useful for developing high-temperature electronic devices and fabrication process with the similar metal chalcogenide films.

18.
Sci Rep ; 7(1): 4528, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674448

ABSTRACT

Ag5Pb2O6 has attracted attentions due to its novel nearly-free-electron superconductivity, but its electronic structure and orbital character of the Cooper-pair electrons remain controversial. Here, we present a method utilizing core-level photoemission to show that Pb 6s electrons dominate near the Fermi level. We observe a strongly asymmetric Pb 4 f 7/2 core-level spectrum, while a Ag 3d 5/2 spectrum is well explained by two symmetric peaks. The asymmetry in the Pb 4 f 7/2 spectrum originates from the local attractive interaction between conducting Pb 6s electrons and a Pb 4 f 7/2 core hole, which implies a dominant Pb 6s contribution to the metallic conduction. In addition, the observed Pb 4 f 7/2 spectrum is not explained by the well-known Doniach-Sunjic lineshape for a simple metal. The spectrum is successfully generated by employing a Pb 6s partial density of states from local density approximation calculations, thus confirming the Pb 6s dominant character and free-electron-like density of states of Ag5Pb2O6.

19.
Nanoscale Res Lett ; 12(1): 262, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28395480

ABSTRACT

We report on a thickness-dependent wetting property of WS2/Al2O3 and WS2/SiO2/Si structures. We prepared WS2 films with gradient thickness by annealing thickness-controlled WO3 films at 800 °C in sulfur atmosphere. Raman spectroscopy measurements showed step-like variation in the thickness of WS2 over substrates several centimeters in dimension. On fresh surfaces, we observed a significant change in the water contact angle depending on film thickness and substrate. Transmission electron microscopy analysis showed that differences in the surface roughness of WS2 films can account for the contrasting wetting properties between WS2/Al2O3 and WS2/SiO2/Si. The thickness dependence of water contact angle persisted for longer than 2 weeks, which demonstrates the stability of these wetting properties when exposed to air contamination.

20.
Sci Rep ; 6: 39544, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000731

ABSTRACT

Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.

SELECTION OF CITATIONS
SEARCH DETAIL
...