Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 251(Pt 2): 118749, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38522743

ABSTRACT

The chemical reactivity, contribution of emission sources, and risk assessment of volatile organic compounds (VOCs) in the atmosphere of the Seoul metropolitan area (SMA) were analyzed. Datasets collected from 6 photochemical assessment monitoring stations (PAMS) of SMA from 2018 to 2021 were used. Alkenes and aromatics contributed significantly to ozone formation relative to the emission concentrations, and aromatics accounted for most of the secondary organic aerosols (SOA) formation in the SMA. The contributions of ozone and SOA formation were found to be notably higher at measurement stations in residential areas such as Guwol (GW) and Sosabon (SS) compared to other measurement stations. From the results of an emission source analysis, it was confirmed that anthropogenic sources such as combustion sources, vehicle exhaust, fuel evaporation, and solvent use had a significant effect at all measurement stations. Assessing the health risk, non-carcinogenic compounds were at acceptable level at all measurement stations. On the other hand, carcinogenic compounds were approaching risk level (10-4), thereby demanding immediate attention. The level of exposure to carcinogenic compounds increased by age group, and male was more vulnerable than female. It was found that SS had the highest level of exposure to carcinogens in the atmosphere of the population ages 60 or older. The health threat of the SMA population is expected due to direct exposure from inhalation of ambient toxic compounds and indirect exposure from ozone and PM2.5 formations through oxidation of VOCs. This study emphasizes the importance of addressing specific emission sources within the metropolitan area and developing comprehensive regional strategies to mitigate VOCs.


Subject(s)
Air Pollutants , Environmental Monitoring , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Seoul , Humans , Risk Assessment , Male , Ozone/analysis , Female , Middle Aged , Republic of Korea , Adult , Aerosols/analysis , Aged , Young Adult
2.
Environ Int ; 178: 108069, 2023 08.
Article in English | MEDLINE | ID: mdl-37419059

ABSTRACT

In this study, we developed a practical approach to augment elemental carbon (EC) emissions to improve the reproducibility of the most recent air quality with photochemical grid modeling in support of source-receptor relationship analysis. We demonstrated the usefulness of this approach with a series of simulations for EC concentrations over Northeast Asia during the 2016 Korea-United States Air Quality study. Considering the difficulty of acquiring EC observational data in foreign countries, our approach takes two steps: (1) augmenting upwind EC emissions based on simulated upwind contributions and observational data at a downwind EC monitor considered as the most representative monitor for upwind influences and (2) adjusting downwind EC emissions based on simulated downwind contributions, including the effects of updated upwind emissions from the first step and observational data at the downwind EC monitors. The emission adjustment approach resulted in EC emissions 2.5 times higher than the original emissions in the modeling domain. The EC concentration in the downwind area was observed to be 1.0 µg m-3 during the study period, while the simulated EC concentration was 0.5 µg m-3 before the emission adjustment. After the adjustment, the normalized mean error of the daily mean EC concentration decreased from 48 % to 22 % at ground monitor locations. We found that the EC simulation results were improved at high altitudes, and the contribution of the upwind areas was greater than that of the downwind areas for EC concentrations downwind with or without emission adjustment. This implies that collaborating with upwind regions is essential to alleviate high EC concentrations in downwind areas. The developed emission adjustment approach can be used for any upwind or downwind area when transboundary air pollution mitigation is needed because it provides better reproducibility of the most recent air quality through modeling with improved emission data.


Subject(s)
Air Pollutants , Air Pollution , United States , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Reproducibility of Results , Environmental Monitoring/methods , Air Pollution/analysis , Carbon/analysis , Asia
SELECTION OF CITATIONS
SEARCH DETAIL