Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.147
Filter
1.
EClinicalMedicine ; 74: 102736, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091669

ABSTRACT

Background: Masked hypertension is associated with target organ damage (TOD) and adverse health outcomes, but whether antihypertensive treatment improves TOD in patients with masked hypertension is unproven. Methods: In this multicentre, randomised, double-blind, placebo-controlled trial at 15 Chinese hospitals, untreated outpatients aged 30-70 years with an office blood pressure (BP) of <140/<90 mm Hg and 24-h, daytime or nighttime ambulatory BP of ≥130/≥80, ≥135/≥85, or ≥120/≥70 mm Hg were enrolled. Patients had ≥1 sign of TOD: electrocardiographic left ventricular hypertrophy (LVH), brachial-ankle pulse wave velocity (baPWV) ≥1400 cm/s, or urinary albumin-to-creatinine ratio (ACR) ≥3.5 mg/mmol in women and ≥2.5 mg/mmol in men. Exclusion criteria included secondary hypertension, diabetic nephropathy, serum creatinine ≥176.8 µmol/L, and cardiovascular disease within 6 months of screening. After stratification for centre, sex and the presence of nighttime hypertension, eligible patients were randomly assigned (1:1) to receive antihypertensive treatment or placebo. Patients and investigators were masked to group assignment. Active treatment consisted of allisartan starting at 80 mg/day, to be increased to 160 mg/day at month 2, and to be combined with amlodipine 2.5 mg/day at month 4, if the ambulatory BP remained uncontrolled. Matching placebos were used likewise in the control group. The primary endpoint was the improvement of TOD, defined as normalisation of baPWV, ACR or LVH or a ≥20% reduction in baPWV or ACR over the 48-week follow-up. The intention-to-treat analysis included all randomised patients, the per-protocol analysis patients who fully adhered to the protocol, and the safety analysis all patients who received at least one dose of the study medication. This study is registered with ClinicalTrials.gov, NCT02893358. Findings: Between February 14, 2017, and October 31, 2020, 320 patients (43.1% women; mean age ± SD 53.7 ± 9.7 years) were enrolled. Baseline office and 24-h BP averaged 130 ± 6.0/81 ± 5.9 mm Hg and 136 ± 8.6/84 ± 6.1 mm Hg, and the prevalence of elevated baPWV, ACR and LVH were 97.5%, 12.5%, and 7.8%, respectively. The 24-h BP decreased on average (±SE) by 10.1 ± 0.9/6.4 ± 0.5 mm Hg in 153 patients on active treatment and by 1.3 ± 0.9/1.0 ± 0.5 mm Hg in 167 patients on placebo. Improvement of TOD occurred in 79 patients randomised to active treatment and in 49 patients on placebo: 51.6% (95% CI 43.7%, 59.5%) versus 29.3% (22.1, 36.5%; p < 0.0001). Per-protocol and subgroup analyses were confirmatory. Adverse events were generally mild and occurred in 38 (25.3%) and 43 (26.4%) patients randomised to active treatment and placebo, respectively (p = 0.83). Interpretation: Our results suggest that antihypertensive treatment improves TOD in patients with masked hypertension, highlighting the need of treatment. However, the long-term benefit in preventing cardiovascular complications still needs to be established. Funding: Salubris China.

2.
BMC Womens Health ; 24(1): 442, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098907

ABSTRACT

OBJECTIVE: Breast cancer has become the most prevalent malignant tumor in women, and the occurrence of distant metastasis signifies a poor prognosis. Utilizing predictive models to forecast distant metastasis in breast cancer presents a novel approach. This study aims to utilize readily available clinical data and advanced machine learning algorithms to establish an accurate clinical prediction model. The overall objective is to provide effective decision support for clinicians. METHODS: Data from 239 patients from two centers were analyzed, focusing on clinical blood biomarkers (tumor markers, liver and kidney function, lipid profile, cardiovascular markers). Spearman correlation and the least absolute shrinkage and selection operator regression were employed for feature dimension reduction. A predictive model was built using LightGBM and validated in training, testing, and external validation cohorts. Feature importance correlation analysis was conducted on the clinical model and the comprehensive model, followed by univariate and multivariate regression analysis of these features. RESULTS: Through internal and external validation, we constructed a LightGBM model to predict de novo bone metastasis in newly diagnosed breast cancer patients. The area under the receiver operating characteristic curve values of this model in the training, internal validation test, and external validation test1 cohorts were 0.945, 0.892, and 0.908, respectively. Our validation results indicate that the model exhibits high sensitivity, specificity, and accuracy, making it the most accurate model for predicting bone metastasis in breast cancer patients. Carcinoembryonic Antigen, creatine kinase, albumin-globulin ratio, Apolipoprotein B, and Cancer Antigen 153 (CA153) play crucial roles in the model's predictions. Lipoprotein a, CA153, gamma-glutamyl transferase, α-Hydroxybutyrate dehydrogenase, alkaline phosphatase, and creatine kinase are positively correlated with breast cancer bone metastasis, while white blood cell ratio and total cholesterol are negatively correlated. CONCLUSION: This study successfully utilized clinical blood biomarkers to construct an artificial intelligence model for predicting distant metastasis in breast cancer, demonstrating high accuracy. This suggests potential clinical utility in predicting and identifying distant metastasis in breast cancer. These findings underscore the potential prospect of developing economically efficient and readily accessible predictive tools in clinical oncology.


Subject(s)
Artificial Intelligence , Biomarkers, Tumor , Bone Neoplasms , Breast Neoplasms , Humans , Breast Neoplasms/pathology , Female , Bone Neoplasms/secondary , Bone Neoplasms/blood , Middle Aged , Biomarkers, Tumor/blood , Adult , Aged , ROC Curve , Machine Learning , Predictive Value of Tests
3.
J Phys Chem B ; 128(32): 7722-7735, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39091133

ABSTRACT

The protein-induced fluorescence change technique was employed to investigate the interactions between proteins and their DNA substrates modified with the Cy3 fluorophore. It has been reported that the human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal proline-tryptophan-tryptophan-proline (PWWP) domain (the N-terminal 100 amino acids of HDGF) capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancer. This project investigated the specific binding behavior of HDGF, the PWWP domain, and the C140 domain (the C-terminal 140 amino acids of HDGF) sequentially using protein-induced fluorescence change. We found that the binding of HDGF and its related proteins on Cy3-labeled 15 bp SMYD1 dsDNA will cause a significant decrease in the recorded Cy3 fluorophore intensity, indicating the occurrence of protein-induced fluorescence quenching. The dissociation equilibrium constant was determined by fitting the bound fraction curve to a binding model. An approximate 10-time weaker SMYD1 binding affinity of the PWWP domain was found in comparison to HDGF. Moreover, the PWWP domain is required for DNA binding, and the C140 domain can enhance the DNA binding affinity. Furthermore, we found that the C140 domain can regulate the sequence-specific binding capability of HDGF on SMYD1.


Subject(s)
DNA-Binding Proteins , DNA , Intercellular Signaling Peptides and Proteins , Protein Binding , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Protein Domains , Binding Sites , Carbocyanines/chemistry , Muscle Proteins , Transcription Factors
4.
Int J Parasitol Drugs Drug Resist ; 26: 100560, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39146602

ABSTRACT

Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode Angiostrongylus cantonensis and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in A. cantonensis-infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after A. cantonensis infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in A. cantonensis-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in A. cantonensis excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.

5.
Article in English | MEDLINE | ID: mdl-39141582

ABSTRACT

Heavy metals are crucial carcinogenic agents threatening the environment and living habituates. Among them, arsenic (As) is an important metalloid that is categorized as a group I toxic carcinogen. Roxarsone (RX) is an organoarsenic antibiotic compound primarily used as a veterinarian drug and growth promoter for poultry animals. The extensive usage of RX increased the accumulation of As in living beings and the ecosystem. Therefore, we have prepared an electrochemical sensor based on 3D bismuth oxybromide with 2D selenium-doped graphitic carbon nitride (BOB/SCN) electrocatalyst for the rapid detection of RX. The elemental and structural details were thoroughly investigated with several spectroscopic techniques. The electrochemical properties were measured by impedance and voltammetric measurements. The electrocatalytic behavior toward the RX was estimated with different voltammetric methods. Therefore, our BOB/SCN-based electrochemical sensor demonstrated a low detection limit (2.3 nM), low quantification value (7.7 nM), optimal sensitivity (0.675 µA µM-1 cm-2), and good linear ranges (0.01-77 and 77-857 µM). Additionally, this sensor showed good electrochemical performance and was applied to monitor the RX in various real samples with remarkable recoveries. Based on these results, our BOB/SCN sensor is a promising electrochemical platform for determining RX.

6.
Hu Li Za Zhi ; 71(4): 6-11, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39084887

ABSTRACT

Game-based teaching strategies enrich nursing education by enhancing the appeal and practicality of teaching activities. Different from the high-pressure and serious nature of traditional nursing education, interactive and entertaining teaching strategies that employ board games, card games, escape rooms, virtual reality, scratch cards, Kahoot quiz competitions, and other innovative methods better motivate learners to engage actively with learning content and retain nursing knowledge and practices, resulting in better learning outcomes. Game-based teaching strategies not only strengthen learners' mastery of core nursing concepts but also enhance their decision-making and critical-thinking abilities. In this article, practical applications of game-based teaching are introduced, in hopes that, by applying these instructional approaches, educators can alleviate the stress of the learning process and make learning more efficient and enjoyable for students.


Subject(s)
Clinical Competence , Education, Nursing , Humans , Education, Nursing/methods , Learning
7.
Cancer Med ; 13(14): e70035, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031010

ABSTRACT

INTRODUCTION: The prognostic capability of targeted sequencing of primary tumors in patients with estrogen receptor-positive, human epidermal growth factor receptor-2-negative early-stage invasive breast cancer (EBC) in a real-world setting is uncertain. Therefore, we aimed to determine the correlation between a 22-gene mutational profile and long-term survival outcomes in patients with ER+/ERBB2- EBC. PATIENTS AND METHODS: A total of 73 women diagnosed with ER+/ERBB2- EBC between January 10, 2004, and June 2, 2008, were followed up until December 31, 2022. Univariate and multivariate Cox models were constructed to plot the relapse-free survival (RFS) and overall survival (OS). The log-rank test derived p-value was obtained. For external validation, we performed a survival analysis of 1163 comparable patients retrieved from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. RESULTS: At follow-up, 16 (21.9%) patients had relapsed, while 21 (nearly 29%) harbored mutant genes. Thirty-three missense mutations were detected in 14 genes. The median ages were 51 and 46 years in patients with and without mutations, respectively. Patients with any mutation had a 1.85-fold higher risk of relapse (hazard ratio [HR]: 1.85, 95% confidence interval [CI]: 0.60-5.69) compared to those without any mutation. Patients who harbored any of the six genes (MAP2K4, FGFR3, APC, KIT, RB1, and PTEN) had a nearly 6-fold increase in the risk of relapse (HR: 5.82, 95% CI: 1.31-18.56; p = 0.0069). Multivariate Cox models revealed that the adjusted HR for RFS and OS were 6.67 (95% CI: 1.32-27.57) and 8.31 (p = 0.0443), respectively. METABRIC analysis also demonstrated a trend to significantly worse RFS (p = 0.0576) in the subcohort grouped by having a mutation in any of the six genes. CONCLUSIONS: Our single-institution tissue bank study of Taiwanese women with ER+/ERBB2- EBC suggests that a novel combination of six gene mutations might have prognostic capability for survival outcomes.


Subject(s)
Breast Neoplasms , Mutation , Receptor, ErbB-2 , Receptors, Estrogen , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Middle Aged , Receptors, Estrogen/metabolism , Prognosis , Adult , Neoplasm Staging , Biomarkers, Tumor/genetics , Aged , Neoplasm Invasiveness
8.
Nano Lett ; 24(28): 8687-8695, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38973752

ABSTRACT

Electrocatalytic nitrate reduction is an efficient way to produce ammonia sustainably. Herein, we rationally designed a copper metalloporphyrin-based hydrogen-bonded organic framework (HOF-Cu) through molecular engineering strategies for electrochemical nitrate reduction. As a result, the state-of-the-art HOF-Cu catalyst exhibits high NH3 Faradaic efficiency of 93.8%, and the NH3 production rate achieves a superior activity of 0.65 mmol h-1 cm-2. The in situ electrochemical spectroscopic combined with density functional theory calculations reveals that the dispersed Cu promotes the adsorption of NO3- and the mechanism is followed by deoxidation of NO3- to *NO and accompanied by deep hydrogenation. The generated *H participates in the deep hydrogenation of intermediate with fast kinetics as revealed by operando electrochemical impedance spectroscopy, and the competing hydrogen evolution reaction is suppressed. This research provides a promising approach to the conversion of nitrate to ammonia, maintaining the nitrogen balance in the atmosphere.

9.
Sci Rep ; 14(1): 15561, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38969798

ABSTRACT

Breast cancer metastasis significantly impacts women's health globally. This study aimed to construct predictive models using clinical blood markers and ultrasound data to predict distant metastasis in breast cancer patients, ensuring clinical applicability, cost-effectiveness, relative non-invasiveness, and accessibility of these models. Analysis was conducted on data from 416 patients across two centers, focusing on clinical blood markers (tumor markers, liver and kidney function indicators, blood lipid markers, cardiovascular biomarkers) and maximum lesion diameter from ultrasound. Feature reduction was performed using Spearman correlation and LASSO regression. Two models were built using LightGBM: a clinical model (using clinical blood markers) and a combined model (incorporating clinical blood markers and ultrasound features), validated in training, internal test, and external validation (test1) cohorts. Feature importance analysis was conducted for both models, followed by univariate and multivariate regression analyses of these features. The AUC values of the clinical model in the training, internal test, and external validation (test1) cohorts were 0.950, 0.795, and 0.883, respectively. The combined model showed AUC values of 0.955, 0.835, and 0.918 in the training, internal test, and external validation (test1) cohorts, respectively. Clinical utility curve analysis indicated the combined model's superior net benefit in identifying breast cancer with distant metastasis across all cohorts. This suggests the combined model's superior discriminatory ability and strong generalization performance. Creatine kinase isoenzyme (CK-MB), CEA, CA153, albumin, creatine kinase, and maximum lesion diameter from ultrasound played significant roles in model prediction. CA153, CK-MB, lipoprotein (a), and maximum lesion diameter from ultrasound positively correlated with breast cancer distant metastasis, while indirect bilirubin and magnesium ions showed negative correlations. This study successfully utilized clinical blood markers and ultrasound data to develop AI models for predicting distant metastasis in breast cancer. The combined model, incorporating clinical blood markers and ultrasound features, exhibited higher accuracy, suggesting its potential clinical utility in predicting and identifying breast cancer distant metastasis. These findings highlight the potential prospects of developing cost-effective and accessible predictive tools in clinical oncology.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoplasm Metastasis , Humans , Breast Neoplasms/blood , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Female , Biomarkers, Tumor/blood , Middle Aged , Adult , Ultrasonography/methods , Aged
10.
Bioact Mater ; 40: 88-103, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38962658

ABSTRACT

Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.

11.
Small ; : e2403778, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38948957

ABSTRACT

Bismuth-based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth-based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large-scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3-FDCA material. First-principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5-furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3-FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm- 2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large-scale synthesis of finely structured, efficient bismuth-based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.

12.
Phytomedicine ; 132: 155860, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991252

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type that urgently requires effective therapeutic strategies. Andrographolide, a labdane diterpenoid compound abundant in Andrographis paniculata, has anticancer effects against various cancer types, but its anticancer activity and mechanism against PDAC remain largely uncharacterized. PURPOSE: This study explores novel drug target(s) and underlying molecular mechanism of andrographolide against PDAC. STUDY DESIGN AND METHODS: The malignant phenotypes of PDAC cells, PANC-1 and MIA PaCa-2 cells, were measured using MTT, clonogenic assays, and Transwell migration assays. A PDAC xenograft animal model was used to evaluate tumor growth in vivo. Western blot, immunofluorescence and immunohistochemistry were used for measuring protein expression. The TCGA database was analyzed to evaluate promoter methylation status, gene expression, and their relationship with patient survival rates. RT-qPCR was used for detecting mRNA expression. Reporter assays were used for detecting signal transduction pathways. Promoter DNA methylation was determined by sodium bisulfite treatment and methylation-specific PCR (MSP). The biological function and role of specific genes involved in drug effects were measured through gene overexpression. RESULTS: Andrographolide treatment suppressed the proliferation and migration of PDAC cells and impaired tumor growth in vivo. Furthermore, andrographolide induced the mRNA and protein expression of zinc finger protein 382 (ZNF382) in PDAC cells. Overexpression of ZNF382 inhibited malignant phenotypes and cancer-associated signaling pathways (AP-1, NF-κB and ß-catenin) and oncogenes (ZEB-1, STAT-3, STAT-5, and HIF-1α). Overexpression of ZNF382 delayed growth of PANC-1 cells in vivo. ZNF382 mRNA and protein expression was lower in tumor tissues than in adjacent normal tissues of pancreatic cancer patients. Analysis of the TCGA database found the ZNF382 promoter is hypermethylated in primary pancreatic tumors which correlates with its low expression. Furthermore, andrographolide inhibited the expression of DNA methyltransferase 3 beta (DNMT3B) and increased the demethylation of the ZNF382 promoter in PDAC cells. Overexpression of DNMT3B attenuated the andrographolide-suppressed proliferation and migration of PDAC cells. CONCLUSION: Our finding revealed that ZNF382 acts as a tumor suppressor gene in pancreatic cancer and andrographolide restores ZNF382 expression to suppress pancreatic cancer, providing a novel molecular target and a promising therapeutic approach for treating pancreatic cancer.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , DNA Methyltransferase 3B , Diterpenes , Pancreatic Neoplasms , Diterpenes/pharmacology , Humans , Animals , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , DNA Methylation/drug effects , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Mice, Nude , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Mice , Promoter Regions, Genetic/drug effects , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Antineoplastic Agents, Phytogenic/pharmacology , Signal Transduction/drug effects , Male
13.
Front Oncol ; 14: 1409273, 2024.
Article in English | MEDLINE | ID: mdl-38947897

ABSTRACT

Objective: This study aims to develop an artificial intelligence model utilizing clinical blood markers, ultrasound data, and breast biopsy pathological information to predict the distant metastasis in breast cancer patients. Methods: Data from two medical centers were utilized, Clinical blood markers, ultrasound data, and breast biopsy pathological information were separately extracted and selected. Feature dimensionality reduction was performed using Spearman correlation and LASSO regression. Predictive models were constructed using LR and LightGBM machine learning algorithms and validated on internal and external validation sets. Feature correlation analysis was conducted for both models. Results: The LR model achieved AUC values of 0.892, 0.816, and 0.817 for the training, internal validation, and external validation cohorts, respectively. The LightGBM model achieved AUC values of 0.971, 0.861, and 0.890 for the same cohorts, respectively. Clinical decision curve analysis showed a superior net benefit of the LightGBM model over the LR model in predicting distant metastasis in breast cancer. Key features identified included creatine kinase isoenzyme (CK-MB) and alpha-hydroxybutyrate dehydrogenase. Conclusion: This study developed an artificial intelligence model using clinical blood markers, ultrasound data, and pathological information to identify distant metastasis in breast cancer patients. The LightGBM model demonstrated superior predictive accuracy and clinical applicability, suggesting it as a promising tool for early diagnosis of distant metastasis in breast cancer.

14.
Chem Asian J ; : e202400697, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941239

ABSTRACT

Novel D-A1-A2-π-A organic sensitizers (FZ-sensitizer), utilizing spiro[fluorene-9,9'-phenanthren]-10'-one (A1) and benzo[c][1,2,5]thiadiazole(A2) moiety as two auxiliary acceptors, are synthesized and applied in dye-sensitized solar cells (DSSCs) and hydrogen production. By incorporating a bulky A1 and A2 between the donor (D) and π-bridge moiety, structural modifications inhibit molecular aggregation, while the carbonyl group enhances the capture of Li+ ions, thereby delaying charge recombination. Furthermore, the extended π-conjugation broadens the light absorption range and enhances the power conversion efficiency (PCE) of FZ-2 under AM1.5 conditions, achieving up to 5.72%. Co-sensitization with N719 and FZ-2 shows PCE of 9.60% under one sun. Under TL84 indoor light conditions, the efficiency is 29.69% at 2500 lux. FZ-sensitizers also exhibit high efficiency in photocatalytic hydrogen production. The hydrogen production activities of FZ-2 are 9190 µmol/g (1 hour) and 76582 µmol/g (12 hours) respectively, while those of FZ-1 are 7430 µmol/g (1 hour) and 64004 µmol/g (12 hours), indicating that FZ-2 can inject charges into TiO2 more efficiently and utilize them for water splitting. Stability testing of photocatalytic water splitting after 12 hours shows a turnover number (TON) of 4249 for FZ-1 and 5378 for FZ-2.

15.
Plants (Basel) ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931142

ABSTRACT

Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin-Arabidopsis D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency.

16.
Heliyon ; 10(11): e31630, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867953

ABSTRACT

Nucleoid-associated proteins play a crucial role in the compaction and regulation of genetic material across organisms. The Sac10b family, also known as Alba, comprises widely distributed and highly conserved nucleoid-associated proteins found in archaea. Sac10b is identified as the first 10 kDa DNA-binding protein in the thermoacidophile Sulfolobus acidocaldarius. Here, we present the crystal structures of two homologous proteins, Sac10b1 and Sac10b2, as well as the Sac10b1 mutant F59A, determined at a resolution of 1.4-2.0 Å. Electron microscopic images reveal the DNA-bridging capabilities of both Sac10b1 and Sac10b2, albeit to varying extents. Analyses of crystal packing and electron microscopic results suggest that Sac10b1 facilitates cooperative DNA binding, forming extensive bridged filaments via the conserved R58 and F59 residues at the dimer-dimer interface. Substitutions at R58 or F59 of Sac10b1 attenuate end-to-end association, resulting in non-cooperative DNA binding, and formation of small, bridged DNA segments in a way similar to Sac10b2. Analytical ultracentrifuge and circular dichroism confirm the presence of thermostable, acid-tolerant dimers in both Sac10b1 and Sac10b2. These findings attest to the functional role of Sac10b in organizing and stabilizing chromosomal DNA through distinct bridging interactions, particularly under extreme growth conditions.

17.
Circ Heart Fail ; 17(7): e011504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910562

ABSTRACT

BACKGROUND: The mechanism of cardiac reverse remodeling (CRR) mediated by the left ventricular assist device remains unclear. This study aims to identify the specific cell type responsible for CRR and develop the therapeutic target that promotes CRR. METHODS: The nuclei were extracted from the left ventricular tissue of 4 normal controls, 4 CRR patients, and 4 no cardiac reverse remodeling patients and then subjected to single-nucleus RNA sequencing for identifying key cell types responsible for CRR. Gene overexpression in transverse aortic constriction and dilated cardiomyopathy heart failure mouse model (C57BL/6J background) and pathological staining were performed to validate the results of single-nucleus RNA sequencing. RESULTS: Ten cell types were identified among 126 156 nuclei. Cardiomyocytes in CRR patients expressed higher levels of ATP5F1A than the other 2 groups. The macrophages in CRR patients expressed more anti-inflammatory genes and functioned in angiogenesis. Endothelial cells that elevated in no cardiac reverse remodeling patients were involved in the inflammatory response. Echocardiography showed that overexpressing ATP5F1A through cardiomyocyte-specific adeno-associated virus 9 demonstrated an ability to improve heart function and morphology. Pathological staining showed that overexpressing ATP5F1A could reduce fibrosis and cardiomyocyte size in the heart failure mouse model. CONCLUSIONS: The present results of single-nucleus RNA sequencing and heart failure mouse model indicated that ATP5F1A could mediate CRR and supported the development of therapeutics for overexpressing ATP5F1A in promoting CRR.


Subject(s)
Disease Models, Animal , Heart Failure , Mice, Inbred C57BL , Myocytes, Cardiac , Ventricular Remodeling , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Humans , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Mice , Male , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Female , Middle Aged
18.
Exp Brain Res ; 242(8): 1983-1998, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38935089

ABSTRACT

The aim of this study was to investigate histone deacetylase 6 (HDAC6) modifies the heat shock protein 90 (HSP90) and heat shock transcription factor 1 (HSF1) affect the levels of pathological markers such as Aß oligomers (Aßo) and Tau phosphorylation (p-Tau) in APP/PS1 double transgenic mice hippocampal tissues or HT22 neurons as well as the changes in cognitive behavioral functions of mice. (1) APP/PS1 transgenic mice (6 months old, 25 ~ 30 g) were randomly assigned to 5 experimental groups, C57BL/6J mice (6 months old, 25 ~ 30 g) were used as 4 control groups, with 8 mice in each group. All mice underwent intracerebroventricular (i.c.v.) cannulation, and the experimental groups were administered with normal saline (APP + NS group), HDAC6 agonist tubastatin A hydrochloride (TSA) (APP + TSA group) or HDAC6 agonist theophylline (Theo) (APP + Theo group), HSP90 inhibitor Ganetespib (Gane) (APP + Gane group), or a combination of pre-injected Gane by TSA (APP + Gane + TSA group); the control group received i.c.v. injections of Gane (Gane group), TSA (TSA group), Theo (Theo group) or NS (NS group), respectively. (2) Mouse hippocampal neurons HT22 were randomly divided into a control group (Control) and an Aß1-42 intervention group (Aß). Within the Aß group, further divisions were made for knockdown HSP90 (Aß + siHSP90 group), overexpression HSP90 (Aß + OE-HSP90 group), knockdown HSF1(Aß + siHSF1 group) and knockdown HSF1 followed by overexpression HSP90 (Aß + siHSF1 + OE-HSP90 group), resulting in a total of 6 groups. Morris water maze test was used to evaluate the cognitive behavior of the mice. Western blot and immunohistochemistry or immunofluorescence were performed to detect the levels of HDAC6, HSP90, HSF1, Aß1-42, Tau protein, and p-Tau in the hippocampal tissue or HT22 cells. qRT-PCR was used to measure the levels of hdac6, hsp90, and hsf1 mRNA in the hippocampus or nerve cells. (1) The levels of HDAC6, Aß1-42 and p-Tau were elevated, while HSP90 and HSF1 were decreased in the hippocampal tissue of APP/PS1 transgenic mice (all P < 0.01). Inhibiting HDAC6 upregulated the expressions of HSP90 and HSF1 in the hippocampal tissue of APP/PS1 mice, while decreasing the levels of Aß1-42 and p-Tau as well as improving the spatial cognitive behavior in mice (P < 0.05 or P < 0.01). The opposite effects were observed upon HDAC6 activation. However, inhibiting HSP90 reduced the expression of HSF1 (P < 0.01) and increased the levels of Aß1-42 and p-Tau (P < 0.05 or P < 0.01) but did not significantly affect the expression of HDAC6 (P > 0.05). No significant changes were observed in the aforementioned indicators in the 4 control groups (P > 0.05). (2) In the Aß1-42 intervention group, HDAC6 and Aß1-42, p-Tau expression levels were elevated, while HSP90 and HSF1 expressions were all decreased, and cell viability was reduced (P < 0.05 or P < 0.01). Overexpression of HSP90 upregulated HSF1 expression, decreased the levels of Aß1-42 and p-Tau, and increased cell viability (P < 0.05 or P < 0.01). Knocking down HSP90 had the opposite effect; and knocking down HSF1 increased the levels of Aß1-42 and p-Tau and decreased cells viability (all P < 0.01), but did not result in significant changes in the expression levels of HSP90 (P > 0.05). Inhibiting HDAC6 can upregulate the expressions of HSP90 and HSF1 but reduce the levels of Aß1-42 and p-Tau in the hippocampus of APP/PS1 mice and improvement of cognitive behavioral function in mice; Overexpression of HSP90 can increase HSF1 but decrease Aß1-42 and p-Tau levels in the hippocampal neurons and increase cell activity. It is suggested that HDAC6 may affect the formation of Aß oligomers and the changes in Tau protein phosphorylation levels in the hippocampus of AD transgenic mouse as well as the alterations in cognitive behavioral functions by regulating the HSP90-HSF1 pathway.


Subject(s)
HSP90 Heat-Shock Proteins , Heat Shock Transcription Factors , Hippocampus , Histone Deacetylase 6 , Mice, Inbred C57BL , Mice, Transgenic , Animals , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Mice , Heat Shock Transcription Factors/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Amyloid beta-Peptides/metabolism , Cognition/physiology , Cognition/drug effects , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , tau Proteins/metabolism , Male , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
19.
Plant Cell ; 36(8): 2873-2892, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38723594

ABSTRACT

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38, and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signaling pathway and the cyclin-dependent kinase module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.


Subject(s)
Cyclin C , Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Phosphorylation , Plant Proteins/metabolism , Plant Proteins/genetics , Cyclin C/metabolism , Cyclin C/genetics , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plants, Genetically Modified
20.
J Hypertens ; 42(8): 1350-1357, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38690937

ABSTRACT

OBJECTIVES: Blood pressure (BP) variability (BPV) can be assessed using office (OBP), home (HBP), or ambulatory BP (ABP) measurements. This analysis investigated the association and agreement between OBP, HBP, and ABP measurements for BPV assessment at baseline and 10 weeks after initiating antihypertensive drug therapy. METHODS: Untreated hypertensive patients with elevated BPV were randomized to receive an angiotensin-converting enzyme inhibitor (ramipril) or a calcium channel blocker (nifedipine GITS) in a 10-week, open-label, blinded-end point study. BPV was assessed using standard deviation (SD) and coefficient of variation (CV) (reading-to-reading analyses). RESULTS: Data from 146 participants from three research centers (Athens/Greece; Milan/Italy; Shanghai/China) were analyzed [mean age 53 ±â€Š10 (SD) years, male individuals 60%, baseline systolic OBP, HBP, and 24 h ABP 144 ±â€Š9, 138 ±â€Š10, and 143 ±â€Š10 mmHg, respectively]. Post-treatment minus pre-treatment systolic CV difference was: OBP: 0.3%, P  = 0.28; HBP: -0.2%, P  = 0.20; 24 h ABP: 1.1%, P  < 0.001. Home and ambulatory (not office) BPV indices presented weak-to-moderate correlation, both before and during treatment (range of coefficients 0.04-0.33). The correlation coefficient between systolic HBP and awake ABP CV was 0.21 and 0.28 before and during treatment, respectively ( P  < 0.05/< 0.001, respectively). Home and ambulatory (not office) BPV indices presented slight-to-fair agreement (range 64-73%) in detecting participants with high systolic BPV (top quartile of respective distributions) both before and during treatment (kappa range 0.04-0.27). CONCLUSION: These data showed a weak-to-moderate association between out-of-office (but not office) BPV indices both before and during BP-lowering treatment, with reasonable agreement in detecting individuals with high BPV. Out-of-office BP measurements provide more similar and consistent BPV information than office measurements.


Subject(s)
Antihypertensive Agents , Blood Pressure Monitoring, Ambulatory , Blood Pressure , Hypertension , Humans , Male , Middle Aged , Antihypertensive Agents/therapeutic use , Female , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/physiopathology , Blood Pressure Monitoring, Ambulatory/methods , Adult , Ramipril/therapeutic use , Aged , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Nifedipine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL