Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 194(2): 1041-1058, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37772952

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Plant Stomata/metabolism , Arabidopsis/metabolism , Voltage-Dependent Anion Channels/metabolism , Mitochondria/metabolism
2.
Front Plant Sci ; 14: 1181861, 2023.
Article in English | MEDLINE | ID: mdl-37143889

ABSTRACT

Obesity has become one of the major threats to human health across the globe. The rhizomes of Polygonatum sibiricum have shown promising anti-obesity effect. However, the metabolic and genetic basis mediating this beneficial effect are not fully resolved. It is well known that older rhizomes of P. sibiricum exert stronger pharmacological effects. Here, we performed high-resolution metabolome profiling of P. sibiricum rhizomes at different growth stages, and identified that three candidate anti-obesity metabolites, namely phloretin, linoleic acid and α-linolenic acid, accumulated more in adult rhizomes. To elucidate the genetic basis controlling the accumulation of these metabolites, we performed transcriptome profiling of rhizomes from juvenile and adult P. sibiricum. Through third-generation long-read sequencing, we built a high-quality transcript pool of P. sibiricum, and resolved the genetic pathways involved in the biosynthesis and metabolism of phloretin, linoleic acid and α-linolenic acid. Comparative transcriptome analysis revealed altered expression of the genetic pathways in adult rhizomes, which likely lead to higher accumulation of these candidate metabolites. Overall, we identified several metabolic and genetic signatures related to the anti-obesity effect of P. sibiricum. The metabolic and transcriptional datasets generated in this work could also facilitate future research on other beneficial effects of this medicinal plant.

3.
Curr Biol ; 33(6): 1071-1081.e5, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36841238

ABSTRACT

Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Oxylipins/metabolism , Phototropins/metabolism , Plant Stomata/physiology , Light , Chloroplasts/metabolism
4.
New Phytol ; 235(3): 885-897, 2022 08.
Article in English | MEDLINE | ID: mdl-35491444

ABSTRACT

Salicylic acid (SA) is a key phytohormone regulating plant immunity. Although the transcriptional regulation of SA biosynthesis has been well-studied, its post-translational regulation is largely unknown. We report that a Kelch repeats-containing F-box (KFB) protein, SMALL AND GLOSSY LEAVES 1 (SAGL1), negatively influences SA biosynthesis in Arabidopsis thaliana by mediating the proteolytic turnover of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1), a master transcription factor that directly drives SA biosynthesis during immunity. Loss of SAGL1 resulted in characteristic growth inhibition. Combining metabolomic, transcriptional and phenotypic analyses, we found that SAGL1 represses SA biosynthesis and SA-mediated immune activation. Genetic crosses to mutants that are deficient in SA biosynthesis blocked the SA overaccumulation in sagl1 and rescued its growth. Biochemical and proteomic analysis identified that SAGL1 interacts with SARD1 and promotes the degradation of SARD1 in a proteasome-dependent manner. These results unravelled a critical role of KFB protein SAGL1 in maintaining SA homeostasis via controlling SARD1 stability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , F-Box Proteins/genetics , Gene Expression Regulation, Plant , Plant Immunity , Proteomics , Salicylic Acid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Plant Physiol ; 268: 153585, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34894596

ABSTRACT

Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins , Arabidopsis , Plant Stomata , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium , Calcium-Calmodulin-Dependent Protein Kinases , Mutation , Plant Stomata/physiology , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...