Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 38(1): 107-114, 2018 Feb.
Article in English | MEDLINE | ID: mdl-30074159

ABSTRACT

Low-temperature plasma (LTP) has shown great promise in wound healing, although the underlying mechanism remains poorly understood. In the present study, an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice. The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation, secretion of epidermal growth factor (EGF) and transforming growth factor-ßi (TGF-ßi), production of intracellular reactive oxygen species (ROS), and the percentage of cells in S phase, protein expression of phosphorylated p65 (P-p65) and cyclinD1, but a noted decrease in the protein expression of inhibitor kappa B (IκB). The in vitro experiments demonstrated that 30-s LTP treatment enhanced the number of fibroblasts and the ability of collagen synthesis, while 50-s treatment led to the opposite outcomes. These results suggested that LTP treatment promotes the fibroblast proliferation in wound healing by inducing the generation of ROS, upregulating the expression of P-p65, downregulating the expression of IκB, and activating the NF-κB signaling pathway and consequently altering cell cycle progression (increased DNA synthesis in S phage).


Subject(s)
Cell Proliferation , Fibroblasts/drug effects , Plasma Gases/pharmacology , Signal Transduction , Wound Healing , Animals , Cell Cycle , Cell Line , Collagen/metabolism , Cyclin D1/metabolism , Epidermal Growth Factor/metabolism , Fibroblasts/physiology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism
2.
Wound Repair Regen ; 23(6): 878-84, 2015.
Article in English | MEDLINE | ID: mdl-26342154

ABSTRACT

Cold plasma has become an attractive tool for promoting wound healing and treating skin diseases. This article presents an atmospheric pressure plasma jet (APPJ) generated in argon gas through dielectric barrier discharge, which was applied to superficial skin wounds in BALB/c mice. The mice (n = 50) were assigned randomly into five groups (named A, B, C, D, E) with 10 animals in each group. Natural wound healing was compared with stimulated wound healing treated daily with APPJ for different time spans (10, 20, 30, 40, and 50 seconds) on 14 consecutive days. APPJ emission spectra, morphological changes in animal wounds, and tissue histological parameters were analyzed. Statistical results revealed that wound size changed over the duration of the experimental period and there was a significant interaction between experimental day and group. Differences between group C and other groups at day 7 were statistically significant (p < 0.05). All groups had nearly achieved closure of the untreated control wounds at day 14. The wounds treated with APPJ for 10, 20, 30, and 40 seconds showed significantly enhanced daily improvement compared with the control and almost complete closure at day 12, 10, 7, and 13, respectively. The optimal results of epidermal cell regeneration, granulation tissue hyperplasia, and collagen deposition in histological aspect were observed at day 7. However, the wounds treated for 50 seconds were less well healed at day 14 than those of the control. It was concluded that appropriate doses of cold plasma could inactivate bacteria around the wound, activate fibroblast proliferation in wound tissue, and eventually promote wound healing. Whereas, over doses of plasma suppressed wound healing due to causing cell death by apoptosis or necrosis. Both positive and negative effects may be related to the existence of reactive oxygen and nitrogen species (ROS and RNS) in APPJ.


Subject(s)
Collagen/metabolism , Granulation Tissue/pathology , Plasma Gases/pharmacology , Wound Healing , Wounds and Injuries/pathology , Animals , Atmospheric Pressure , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...