Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35328743

ABSTRACT

Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.


Subject(s)
Myotonic Dystrophy , RNA , Fluorescence , Humans , Ligands , Myotonic Dystrophy/genetics , RNA/genetics , RNA-Binding Proteins/metabolism , Sisomicin
2.
Curr Protoc ; 1(11): e295, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34792862

ABSTRACT

This article provides a detailed procedure for the chemical synthesis and characterization of photoswitchable hydrazone phosphoramidite and its incorporation into oligodeoxynucleotides. The synthesis starts with commercially available deoxyuridine, followed by conversion of the 4-oxo into a 4-chloro moiety via Appel reaction to install the key hydrazone group in the absence of base. The hydrazone phosphoramidite building block is compatible with the conventional amidite chemistry protocols for solid-phase synthesis of oligodeoxynucleotides. Our method expands the current nucleotide pool by adding a novel, functional DNA building block that is suitable for a broad spectrum of applications, including the regulation of DNA-enzyme interactions and DNA synthesis by irradiation with cell-friendly blue light. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of photoswitchable hydrazone phosphoramidite Basic Protocol 2: Synthesis and purification of oligodeoxynucleotides containing the hydrazone photoswitch Basic Protocol 3: Primer extension assay for functionality studies of hydrazone cytidine.


Subject(s)
Hydrazones , Oligodeoxyribonucleotides , Cytidine , DNA , Solid-Phase Synthesis Techniques
3.
Chemistry ; 27(32): 8372-8379, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33872432

ABSTRACT

A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.


Subject(s)
Cytidine , Hydrazones , DNA , DNA-Directed DNA Polymerase , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL
...