Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35885959

ABSTRACT

Type 2 diabetes (T2D) is a common chronic disease whose etiology is known to have a strong genetic component. Standard genetic approaches, although allowing for the detection of a number of gene variants associated with the disease as well as differentially expressed genes, cannot fully explain the hereditary factor in T2D. The explosive growth in the genomic sequencing technologies over the last decades provided an exceptional impetus for transcriptomic studies and new approaches to gene expression measurement, such as RNA-sequencing (RNA-seq) and single-cell technologies. The transcriptomic analysis has the potential to find new biomarkers to identify risk groups for developing T2D and its microvascular and macrovascular complications, which will significantly affect the strategies for early diagnosis, treatment, and preventing the development of complications. In this article, we focused on transcriptomic studies conducted using expression arrays, RNA-seq, and single-cell sequencing to highlight recent findings related to T2D and challenges associated with transcriptome experiments.


Subject(s)
Diabetes Mellitus, Type 2 , Transcriptome , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling , Humans , Sequence Analysis, RNA , Transcriptome/genetics
2.
Genes (Basel) ; 13(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35328087

ABSTRACT

The COVID-19 pandemic has drawn the attention of many researchers to the interaction between pathogen and host genomes. Over the last two years, numerous studies have been conducted to identify the genetic risk factors that predict COVID-19 severity and outcome. However, such an analysis might be complicated in cohorts of limited size and/or in case of limited breadth of genome coverage. In this work, we tried to circumvent these challenges by searching for candidate genes and genetic variants associated with a variety of quantitative and binary traits in a cohort of 840 COVID-19 patients from Russia. While we found no gene- or pathway-level associations with the disease severity and outcome, we discovered eleven independent candidate loci associated with quantitative traits in COVID-19 patients. Out of these, the most significant associations correspond to rs1651553 in MYH14p = 1.4 × 10-7), rs11243705 in SETX (p = 8.2 × 10-6), and rs16885 in ATXN1 (p = 1.3 × 10-5). One of the identified variants, rs33985936 in SCN11A, was successfully replicated in an independent study, and three of the variants were found to be associated with blood-related quantitative traits according to the UK Biobank data (rs33985936 in SCN11A, rs16885 in ATXN1, and rs4747194 in CDH23). Moreover, we show that a risk score based on these variants can predict the severity and outcome of hospitalization in our cohort of patients. Given these findings, we believe that our work may serve as proof-of-concept study demonstrating the utility of quantitative traits and extensive phenotyping for identification of genetic risk factors of severe COVID-19.


Subject(s)
COVID-19 , COVID-19/genetics , COVID-19/pathology , Cohort Studies , Genome-Wide Association Study , Humans , Pandemics , Patient Acuity , Risk Factors , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...