Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948726

ABSTRACT

Anaphase is tightly controlled in space and time to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood. Here, we address how the movement of chromosomes changes during the cleavage divisions of the Drosophila blastoderm. We show that the speed of chromosome separation gradually decreases during the 4 nuclear divisions of the blastoderm. This reduction in speed is accompanied by a similar reduction in the length of the spindle, thus ensuring that these two quantities are tightly linked. Using a combination of genetic and quantitative imaging approaches, we find that two processes contribute to controlling the speed at which chromosomes move at mitotic exit: the activity of molecular motors important for microtubule depolymerization and the cell cycle oscillator. Specifically, we found that the levels of Klp10A, Klp67A, and Klp59C, three kinesin-like proteins important for microtubule depolymerization, contribute to setting the speed of chromosome separation. This observation is supported by quantification of microtubule dynamics indicating that poleward flux rate scales with the length of the spindle. Perturbations of the cell cycle oscillator using heterozygous mutants of mitotic kinases and phosphatases revealed that the duration of anaphase increases during the blastoderm cycles and is the major regulator of chromosome velocity. Thus, our work suggests a potential link between the biochemical rate of mitotic exit and the forces exerted by the spindle. Collectively, we propose that the cell cycle oscillator and spindle length set the speed of chromosome separation in anaphase.

2.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798380

ABSTRACT

Elongation of the vertebrate embryonic axis necessitates rapid expansion of the epidermis to accommodate the growth of underlying tissues. Here, we generated a toolkit to visualize and quantify signaling in entire cell populations of periderm, the outermost layer of the epidermis, in live developing zebrafish. We find that oriented cell divisions facilitate growth of the early periderm during axial elongation rather than cell addition from the basal layer. Activity levels of ERK, a downstream effector of MAPK pathway, gauged by a live biosensor, predicts cell cycle entry, and optogenetic ERK activation controls proliferation dynamics. As development proceeds, rates of peridermal cell proliferation decrease, ERK activity becomes more pulsatile and functionally transitions to promote hypertrophic cell growth. Targeted genetic blockade of cell division generates animals with oversized periderm cells, yet, unexpectedly, development to adulthood is not impaired. Our findings reveal stage-dependent differential responsiveness to ERK signaling and marked developmental robustness in growing teleost skin.

3.
Curr Biol ; 32(9): 2084-2092.e4, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35334230

ABSTRACT

In most metazoans, early embryonic development is characterized by rapid division cycles that pause before gastrulation at the midblastula transition (MBT).1 These cleavage divisions are accompanied by cytoskeletal rearrangements that ensure proper nuclear positioning. However, the molecular mechanisms controlling nuclear positioning are not fully elucidated. In Drosophila, early embryogenesis unfolds in a multinucleated syncytium. Nuclei rapidly move across the anterior-posterior (AP) axis at cell cycles 4-6 in a process driven by actomyosin contractility and cytoplasmic flows.2,3 In shackleton (shkl) mutants, this axial spreading is impaired.4 Here, we show that shkl mutants carry mutations in the cullin-5 (cul-5) gene. Live imaging experiments show that Cul-5 is downstream of the cell cycle but is required for cortical actomyosin contractility. The nuclear spreading phenotype of cul-5 mutants can be rescued by reducing Src activity, suggesting that a major target of cul-5 is Src kinase. cul-5 mutants display gradients of nuclear density across the AP axis that we exploit to study cell-cycle control as a function of the N/C ratio. We found that the N/C ratio is sensed collectively in neighborhoods of about 100 µm, and such collective sensing is required for a precise MBT, in which all the nuclei in the embryo pause their division cycle. Moreover, we found that the response to the N/C ratio is slightly graded along the AP axis. These two features can be linked to Cdk1 dynamics. Collectively, we reveal a new pathway controlling nuclear positioning and provide a dissection of how nuclear cycles respond to the N/C ratio.


Subject(s)
Cullin Proteins , Drosophila , Actomyosin/metabolism , Animals , Cell Cycle/physiology , Cullin Proteins/metabolism , Drosophila/genetics , Embryo, Nonmammalian , Embryonic Development/genetics
4.
Nature ; 590(7844): 129-133, 2021 02.
Article in English | MEDLINE | ID: mdl-33408418

ABSTRACT

Regeneration is a complex chain of events that restores a tissue to its original size and shape. The tissue-wide coordination of cellular dynamics that is needed for proper morphogenesis is challenged by the large dimensions of regenerating body parts. Feedback mechanisms in biochemical pathways can provide effective communication across great distances1-5, but how they might regulate growth during tissue regeneration is unresolved6,7. Here we report that rhythmic travelling waves of Erk activity control the growth of bone in time and space in regenerating zebrafish scales, millimetre-sized discs of protective body armour. We find that waves of Erk activity travel across the osteoblast population as expanding concentric rings that are broadcast from a central source, inducing ring-like patterns of tissue growth. Using a combination of theoretical and experimental analyses, we show that Erk activity propagates as excitable trigger waves that are able to traverse the entire scale in approximately two days and that the frequency of wave generation controls the rate of scale regeneration. Furthermore, the periodic induction of synchronous, tissue-wide activation of Erk in place of travelling waves impairs tissue growth, which indicates that wave-distributed Erk activation is key to regeneration. Our findings reveal trigger waves as a regulatory strategy to coordinate cell behaviour and instruct tissue form during regeneration.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Osteoblasts/cytology , Osteoblasts/metabolism , Regeneration , Zebrafish/physiology , Animal Scales/cytology , Animal Scales/enzymology , Animal Scales/growth & development , Animal Scales/physiology , Animals , Diffusion , Female , Male , Zebrafish/growth & development
5.
Development ; 140(24): 4937-46, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24198276

ABSTRACT

Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in Drosophila and ECT2 in humans. This RhoGEF has an essential role in cytokinesis, but also plays an unexpected, conserved role in inhibiting Wg/Wnt activity. Loss and gain of pbl function in Drosophila embryos cause pattern defects that indicate altered Wg activity. Both Pbl and ECT2 repress Wg/Wnt target gene expression in cultured Drosophila and human cells. The GEF activity is required for Wnt regulation, whereas other protein domains important for cytokinesis are not. Unlike most negative regulators of Wnt activity, Pbl/ECT2 functions downstream of Armadillo (Arm)/beta-catenin stabilization. Our results indicate GTPase regulation at a novel point in Wg/Wnt signal transduction, and provide new insight into the categorization of ECT2 as a human proto-oncogene.


Subject(s)
Body Patterning/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Proto-Oncogene Proteins/metabolism , Wnt Signaling Pathway , Wnt1 Protein/metabolism , Animals , Armadillo Domain Proteins/genetics , Cell Line , Drosophila Proteins/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Developmental , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Proto-Oncogene Mas , RNA Interference , RNA, Small Interfering , Transcription Factors/genetics , beta Catenin/genetics , rho GTP-Binding Proteins/metabolism
6.
Development ; 139(4): 690-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22219350

ABSTRACT

The specification of the body plan in vertebrates and invertebrates is controlled by a variety of cell signaling pathways, but how signaling output is translated into morphogenesis is an ongoing question. Here, we describe genetic interactions between the Wingless (Wg) signaling pathway and a nonmuscle myosin heavy chain, encoded by the crinkled (ck) locus in Drosophila. In a screen for mutations that modify wg loss-of-function phenotypes, we isolated multiple independent alleles of ck. These ck mutations dramatically alter the morphology of the hook-shaped denticles that decorate the ventral surface of the wg mutant larval cuticle. In an otherwise wild-type background, ck mutations do not significantly alter denticle morphology, suggesting a specific interaction with Wg-mediated aspects of epidermal patterning. Here, we show that changing the level of Wg activity changes the structure of actin bundles during denticle formation in ck mutants. We further find that regulation of the Wg target gene, shaven-baby (svb), and of its transcriptional targets, miniature (m) and forked (f), modulates this ck-dependent process. We conclude that Ck acts in concert with Wg targets to orchestrate the proper shaping of denticles in the Drosophila embryonic epidermis.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/embryology , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/physiology , Signal Transduction/physiology , Wnt1 Protein/metabolism , Actins/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Gene Expression Regulation, Developmental , Humans , Morphogenesis/physiology , Phenotype , Wnt1 Protein/genetics
7.
J Cell Sci ; 123(Pt 13): 2179-89, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20516152

ABSTRACT

Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.


Subject(s)
Cell Nucleus/metabolism , Cytokinesis/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster , GTPase-Activating Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Wnt Proteins/metabolism , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Body Patterning/physiology , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Epistasis, Genetic , GTPase-Activating Proteins/genetics , Genes, Reporter , Humans , Microtubule-Associated Proteins/genetics , Phenotype , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Wnt Proteins/genetics , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
8.
Development ; 134(5): 989-97, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17267442

ABSTRACT

Wnt signaling specifies cell fates in many tissues during vertebrate and invertebrate embryogenesis. To understand better how Wnt signaling is regulated during development, we have performed genetic screens to isolate mutations that suppress or enhance mutations in the fly Wnt homolog, wingless (wg). We find that loss-of-function mutations in the neural determinant SoxNeuro (also known as Sox-neuro, SoxN) partially suppress wg mutant pattern defects. SoxN encodes a HMG-box-containing protein related to the vertebrate Sox1, Sox2 and Sox3 proteins, which have been implicated in patterning events in the early mouse embryo. In Drosophila, SoxN has previously been shown to specify neural progenitors in the embryonic central nervous system. Here, we show that SoxN negatively regulates Wg pathway activity in the embryonic epidermis. Loss of SoxN function hyperactivates the Wg pathway, whereas its overexpression represses pathway activity. Epistasis analysis with other components of the Wg pathway places SoxN at the level of the transcription factor Pan (also known as Lef, Tcf) in regulating target gene expression. In human cell culture assays, SoxN represses Tcf-responsive reporter expression, indicating that the fly gene product can interact with mammalian Wnt pathway components. In both flies and in human cells, SoxN repression is potentiated by adding ectopic Tcf, suggesting that SoxN interacts with the repressor form of Tcf to influence Wg/Wnt target gene transcription.


Subject(s)
Drosophila Proteins/physiology , Drosophila/metabolism , High Mobility Group Proteins/physiology , Proto-Oncogene Proteins/physiology , Repressor Proteins/physiology , Transcription Factors/physiology , Animals , Body Patterning , Cells, Cultured , Drosophila/embryology , Drosophila Proteins/genetics , Epidermis/embryology , Epidermis/physiology , Epistasis, Genetic , High Mobility Group Proteins/genetics , Humans , Mutation , Protein Binding , Proto-Oncogene Proteins/genetics , SOX Transcription Factors , Signal Transduction , Transcription Factors/genetics , Wnt1 Protein
9.
Genetics ; 165(2): 601-12, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14573473

ABSTRACT

In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.


Subject(s)
Codon, Nonsense/metabolism , Drosophila/genetics , Peptide Termination Factors/genetics , Alleles , Amino Acid Sequence , Animals , Codon, Nonsense/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Molecular Sequence Data , Peptide Termination Factors/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Wnt1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...