Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurosci ; 44(14)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38360746

ABSTRACT

An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.


Subject(s)
Brain Diseases , Epilepsy , Neurodevelopmental Disorders , Animals , Female , Male , Mice , Brain Diseases/genetics , Epilepsy/genetics , GABAergic Neurons/metabolism , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Neurodevelopmental Disorders/genetics , Neurotransmitter Agents
2.
Elife ; 122023 01 03.
Article in English | MEDLINE | ID: mdl-36594817

ABSTRACT

UBE3A encodes ubiquitin protein ligase E3A, and in neurons its expression from the paternal allele is repressed by the UBE3A antisense transcript (UBE3A-ATS). This leaves neurons susceptible to loss-of-function of maternal UBE3A. Indeed, Angelman syndrome, a severe neurodevelopmental disorder, is caused by maternal UBE3A deficiency. A promising therapeutic approach to treating Angelman syndrome is to reactivate the intact paternal UBE3A by suppressing UBE3A-ATS. Prior studies show that many neurological phenotypes of maternal Ube3a knockout mice can only be rescued by reinstating Ube3a expression in early development, indicating a restricted therapeutic window for Angelman syndrome. Here, we report that reducing Ube3a-ATS by antisense oligonucleotides in juvenile or adult maternal Ube3a knockout mice rescues the abnormal electroencephalogram (EEG) rhythms and sleep disturbance, two prominent clinical features of Angelman syndrome. Importantly, the degree of phenotypic improvement correlates with the increase of Ube3a protein levels. These results indicate that the therapeutic window of genetic therapies for Angelman syndrome is broader than previously thought, and EEG power spectrum and sleep architecture should be used to evaluate the clinical efficacy of therapies.


Subject(s)
Angelman Syndrome , Mice , Animals , Brain/metabolism , Oligonucleotides, Antisense/metabolism , Oligonucleotides, Antisense/therapeutic use , Mice, Knockout , Sleep , Ubiquitin-Protein Ligases/metabolism , Disease Models, Animal
3.
Elife ; 92020 02 19.
Article in English | MEDLINE | ID: mdl-32073399

ABSTRACT

Mutations in genes encoding synaptic proteins cause many neurodevelopmental disorders, with the majority affecting postsynaptic apparatuses and much fewer in presynaptic proteins. Syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1) is an essential component of the presynaptic neurotransmitter release machinery. De novo heterozygous pathogenic variants in STXBP1 are among the most frequent causes of neurodevelopmental disorders including intellectual disabilities and epilepsies. These disorders, collectively referred to as STXBP1 encephalopathy, encompass a broad spectrum of neurologic and psychiatric features, but the pathogenesis remains elusive. Here we modeled STXBP1 encephalopathy in mice and found that Stxbp1 haploinsufficiency caused cognitive, psychiatric, and motor dysfunctions, as well as cortical hyperexcitability and seizures. Furthermore, Stxbp1 haploinsufficiency reduced cortical inhibitory neurotransmission via distinct mechanisms from parvalbumin-expressing and somatostatin-expressing interneurons. These results demonstrate that Stxbp1 haploinsufficient mice recapitulate cardinal features of STXBP1 encephalopathy and indicate that GABAergic synaptic dysfunction is likely a crucial contributor to disease pathogenesis.


Subject(s)
Brain Diseases/genetics , Brain Diseases/pathology , Haploinsufficiency , Munc18 Proteins/genetics , Animals , Anxiety/genetics , Behavior, Animal , Body Weight/genetics , Cognition Disorders/genetics , Disease Models, Animal , Genes, Lethal , Heterozygote , Hindlimb/physiopathology , Homozygote , Humans , Mice , Mice, Knockout , Survival Rate , Synaptic Transmission/genetics
4.
Am J Hum Genet ; 102(2): 296-308, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395075

ABSTRACT

15q13.3 microdeletion syndrome is characterized by a wide spectrum of neurodevelopmental disorders, including developmental delay, intellectual disability, epilepsy, language impairment, abnormal behaviors, neuropsychiatric disorders, and hypotonia. This syndrome is caused by a deletion on chromosome 15q, which typically encompasses six genes. Here, through studies on OTU deubiquitinase 7A (Otud7a) knockout mice, we identify OTUD7A as a critical gene responsible for many of the cardinal phenotypes associated with 15q13.3 microdeletion syndrome. Otud7a-null mice show reduced body weight, developmental delay, abnormal electroencephalography patterns and seizures, reduced ultrasonic vocalizations, decreased grip strength, impaired motor learning/motor coordination, and reduced acoustic startle. We show that OTUD7A localizes to dendritic spines and that Otud7a-null mice have decreased dendritic spine density compared to their wild-type littermates. Furthermore, frequency of miniature excitatory postsynaptic currents (mEPSCs) is reduced in the frontal cortex of Otud7a-null mice, suggesting a role of Otud7a in regulation of dendritic spine density and glutamatergic synaptic transmission. Taken together, our results suggest decreased OTUD7A dosage as a major contributor to the neurodevelopmental phenotypes associated with 15q13.3 microdeletion syndrome, through the misregulation of dendritic spine density and activity.


Subject(s)
Chromosome Disorders/enzymology , Chromosome Disorders/genetics , Deubiquitinating Enzymes/genetics , Endopeptidases/genetics , Intellectual Disability/enzymology , Intellectual Disability/genetics , Seizures/enzymology , Seizures/genetics , Action Potentials , Animals , Base Sequence , Behavior, Animal , Chromosome Deletion , Chromosomes, Human, Pair 15/enzymology , Chromosomes, Human, Pair 15/genetics , Dendritic Spines/metabolism , Disease Models, Animal , Electroencephalography , Endopeptidases/deficiency , Epilepsy/enzymology , Epilepsy/genetics , Epilepsy/physiopathology , Female , Homozygote , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Synapses/metabolism
5.
Neuron ; 94(2): 294-303.e4, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28392070

ABSTRACT

Respiration is a rhythmic activity as well as one that requires responsiveness to internal and external circumstances; both the rhythm and neuromodulatory responses of breathing are controlled by brainstem neurons in the preBötzinger complex (preBötC) and the retrotrapezoid nucleus (RTN), but the specific ion channels essential to these activities remain to be identified. Because deficiency of sodium leak channel, non-selective (Nalcn) causes lethal apnea in humans and mice, we investigated Nalcn function in these neuronal groups. We found that one-third of mice lacking Nalcn in excitatory preBötC neurons died soon after birth; surviving mice developed apneas in adulthood. Interestingly, in both preBötC and RTN neurons, the Nalcn current influences the resting membrane potential, contributes to maintenance of stable network activity, and mediates modulatory responses to the neuropeptide substance P. These findings reveal Nalcn's specific role in both rhythmic stability and responsiveness to neuropeptides within the respiratory network.


Subject(s)
Calcium/metabolism , Neurons/metabolism , Respiratory Center/metabolism , Sodium Channels/metabolism , Sodium/metabolism , Substance P/metabolism , Animals , Cells, Cultured , Membrane Potentials/physiology , Mice , Periodicity
6.
Elife ; 52016 06 21.
Article in English | MEDLINE | ID: mdl-27328325

ABSTRACT

Many postnatal onset neurological disorders such as autism spectrum disorders (ASDs) and intellectual disability are thought to arise largely from disruption of excitatory/inhibitory homeostasis. Although mouse models of Rett syndrome (RTT), a postnatal neurological disorder caused by loss-of-function mutations in MECP2, display impaired excitatory neurotransmission, the RTT phenotype can be largely reproduced in mice simply by removing MeCP2 from inhibitory GABAergic neurons. To determine what role excitatory signaling impairment might play in RTT pathogenesis, we generated conditional mouse models with Mecp2 either removed from or expressed solely in glutamatergic neurons. MeCP2 deficiency in glutamatergic neurons leads to early lethality, obesity, tremor, altered anxiety-like behaviors, and impaired acoustic startle response, which is distinct from the phenotype of mice lacking MeCP2 only in inhibitory neurons. These findings reveal a role for excitatory signaling impairment in specific neurobehavioral abnormalities shared by RTT and other postnatal neurological disorders.


Subject(s)
Gene Expression , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Neurons/physiology , Animals , Methyl-CpG-Binding Protein 2/deficiency , Mice
SELECTION OF CITATIONS
SEARCH DETAIL