Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735931

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Subject(s)
Gold , Graphite , Oxidative Stress , Quantum Dots , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Zinc Oxide , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Female , Cell Line, Tumor , Gold/chemistry , Graphite/chemistry , Zinc Oxide/chemistry , Animals , Quantum Dots/chemistry , Mice , Metal Nanoparticles/chemistry , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Electrons
2.
Small ; : e2401147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770990

ABSTRACT

Cuproptosis, a recently discovered copper-dependent cell death, presents significant potential for the development of copper-based nanoparticles to induce cuproptosis in cancer therapy. Herein, a unique ternary heterojunction, denoted as HACT, composed of core-shell Au@Cu2O nanocubes with surface-deposited Titanium Dioxide quantum dots and modified with hyaluronic acid is introduced. Compared to core-shell AC NCs, the TiO2/Au@Cu2O exhibits improved energy structure optimization, successfully separating electron-hole pairs for redox use. This optimization results in a more rapid generation of singlet oxygen and hydroxyl radicals triggering oxidative stress under ultrasound radiation. Furthermore, the HACT NCs initiate cuproptosis by Fenton-like reaction and acidic environment, leading to the sequential release of cupric and cuprous ions. This accumulation of copper induces the aggregation of lipoylated proteins and reduces iron-sulfur proteins, ultimately initiating cuproptosis. More importantly, HACT NCs show a tendency to selectively target cancer cells, thereby granting them a degree of biosecurity. This report introduces a ternary heterojunction capable of triggering both cuproptosis and oxidative stress-related combination therapy in a stimulus-responsive manner. It can energize efforts to develop effective melanoma treatment strategies using Cu-based nanoparticles through rational design.

3.
Biosens Bioelectron ; 256: 116278, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38608497

ABSTRACT

The DNA-based logic circuit, constructed to mimic biochemical reaction networks, is highly significant in detecting biomarkers at the molecular level. The differences in the expression levels of microRNAs (miRNAs) within different types of cells provide hope for distinguishing cell subtypes. However, reliance on a single miRNA often leads to unreliable results. Herein, we constructed an enzyme-triggered cascade logic circuit based on the AND gate, which is capable of generating corresponding fluorescence signals in the presence of target miRNAs. The introduction of apurinic/apyrimidinic (AP) sites effectively reduces the likelihood of false signal generation. Amplification of the fluorescence signal relies on the catalytic hairpin assembly and the repetitive reuse of the multicomponent nucleic acid enzyme (MNAzyme). We demonstrated that the logic circuit can not only distinguish cancer cells from normal cells but also identify different types of cancer cells. The programmability of the logic circuits and the simplicity of the assay system allow us to modify the functional sequences to recognize different types of biomarkers, thus providing a reference for the identification of various cell subtypes.


Subject(s)
Biosensing Techniques , DNA , MicroRNAs , Humans , Biosensing Techniques/methods , MicroRNAs/genetics , DNA/genetics , DNA/chemistry , Neoplasms/genetics , Computers, Molecular , Cell Line, Tumor , Biomarkers, Tumor/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
4.
Small ; 19(49): e2303530, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635125

ABSTRACT

Alzheimer's disease (AD) is a severe neurodegenerative condition characterized by inflammation, beta-amyloid (Aß) plaques, and neurodegeneration, which currently lack effective treatments. Chiral nanomaterials have emerged as a promising option for treating neurodegenerative disorders due to their high biocompatibility, strong sustained release ability, and specific enantiomer selectivity. The development of a stimulus-responsive chiral nanomaterial, UiO-66-NH2 @l-MoS2 QDs@PA-Ni (MSP-U), for the treatment of AD is reported. MSP-U is found to stimulate neural stem cell (NSCs) differentiation, promote in situ hydrogen (H2 ) production, and clear Aß plaques. l-MoS2 QDs modified with l-Cysteine (l-Cys) effectively enhance the differentiation of NSCs into neurons through circularly polarized near-infrared radiation. Doped-phytic acid nickel (PA-Ni) improves the activity of l-MoS2 QDs in scavenging reactive oxygen species at the lesion site via photocatalytic H2 production. Loading l-MoS2 QDs with UiO-66 type metal oxide suppresses electron-hole recombination effect, thereby achieving rapid charge separation and improving transport of photogenerated electrons, leading to significantly improved H2 production efficiency. The photothermal effect of MSP-U also clears the generated Aß plaques. In vivo evaluations show that MSP-U improves spatial cognition and memory, suggesting a promising potential candidate for the treatment of AD using chiral nanomaterials.


Subject(s)
Alzheimer Disease , Phthalic Acids , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Molybdenum/pharmacology , Amyloid beta-Peptides/metabolism , Cognition
5.
Opt Express ; 30(25): 45848-45861, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522980

ABSTRACT

In this paper, we proposed a multilayer terahertz absorber composed of hybrid graphene and vanadium dioxide (VO2). Based on electrical controlling of graphene and thermal tuning of VO2, three different switchable absorption states are achieved in one structure. When VO2 is in the metal phase and the Fermi level of graphene is set as 0eV, high-frequency broadband (bandwidth, 5.45THz) absorption from 4.5 to 9.95THz is demonstrated. While VO2 is switched to the insulator state, absorption states depend on the Fermi energy of graphene. As the Fermi level changes from 1eV to 0eV, the absorption can be switched from low-frequency broadband (bandwidth, 2.86THz) to dual-frequency absorption. The effect of geometric parameters and fabrication tolerance on the robustness of the absorption properties is explored. The proposed absorber has three switchable states through modulation of graphene and VO2, which is expected to realize potential applications in modulating, filtering, detecting, and other fields.

6.
Opt Express ; 30(16): 29258-29270, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299104

ABSTRACT

Recently, high-order topological photonic crystals (PhCs) have attracted huge research attention due to their novel physics mechanism and the application potential in integrated photonics. Based on the two-dimensional Su-Schrieffer-Heeger model, we construct and study the mutual coupling between the high-order corner states in 2D dielectric PhCs. Simulation results show that the Q-factor of such corner-localized quasi-bound states in the continuum (BICs) could be enhanced following mutual coupling in finite size. Furthermore, we study the side-coupled structure based on defect-hybrid waveguides and the edge state microring, the quasi-BIC microcavity. The refractive index sensing application based on corner-localized quasi-BICs shows outstanding simulated sensitivity (312.8 nm/RIU) and figure of merit (∼103 1/RIU). The robustness against fabrication errors due to its topologically protected nature makes it competitive compared with other quasi-BICs sensors.

7.
Front Chem ; 7: 362, 2019.
Article in English | MEDLINE | ID: mdl-31192190

ABSTRACT

Two novel aromatic imides, diarylcyclopentadienone-fused naphthalimides (BCPONI-2Br and TCPONI-2Br), are designed and synthesized by condensation coupling cyclopentadienone derivatives at the lateral position of naphthalimide skeleton. It has been found that BCPONI-2Br and TCPONI-2Br are highly electron-withdrawing acceptor moieties, which possess broad absorption bands and very low-lying LUMO energy levels, as low as -4.02 eV. On the basis of both building blocks, six low bandgap D-A copolymers (P1-P6) are prepared via Suzuki or Stille coupling reactions. The optical and electrochemical properties of the polymers are fine-tuned by the variations of donors (carbazole, benzodithiophene, and dithienopyrrole) and π-conjugation linkers (thiophene and benzene). All polymers exhibit several attractive photophysical and electrochemical properties, i.e., broad near-infrared (NIR) absorption, deep-lying LUMO levels (between -3.88 and -3.76 eV), and a very small optical bandgap ( E g opt ) as low as 0.81 eV, which represents the first aromatic diimide-based polymer with an E g opt of <1.0 eV. An investigation of charge carrier transport properties shows that P5 exhibits a moderately high hole mobility of 0.02 cm2 V-1 s-1 in bottom-gate field-effect transistors (FETs) and a typical ambipolar transport behavior in top-gate FETs. The findings suggest that BCPONI-2Br, TCPONI-2Br, and the other similar acceptor units are promising building blocks for novel organic semiconductors with outstanding NIR activity, high electron affinity, and low bandgap, which can be extended to various next-generation optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...