Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Toxicol ; 39(5): 2881-2892, 2024 May.
Article in English | MEDLINE | ID: mdl-38294203

ABSTRACT

Lonicerae japonicae (L. japonicae) flos is a medical and food homology herb. This study investigated the phenolic acid and flavonoid contents in L. japonicae flos water extract solution (LJWES) and the preventive effects of LJWES against liver fibrogenesis via FL83B cells and rats. LJWES contains many polyphenols, such as chlorogenic acid, morin, and epicatechin. LJWES increased cell viability and decreased cytotoxicity in thioacetamide (TAA)-treated FL83B cells (75 mM) (p < .05). LJWES decreased (p < .05) gene expressions of Tnf-α, Tnfr1, Bax, and cytochrome c but upregulated Bcl-2 and Bcl-xl in TAA-treated cells; meanwhile, increased protein levels of P53, cleaved caspase 3, and cleaved caspase 9 in TAA treated cells were downregulated (p < .05) by LJWES supplementation. In vivo, results indicated that TAA treatment increased serum liver damage indices (alanine aminotransferase [ALT] and alkaline phosphatase [ALP]) and cytokines (interleukin-6 and transforming growth factor-ß1) levels and impaired liver antioxidant capacities (increased thiobarbituric acid reactive substance value but decreased catalase/glutathione peroxidase activities) in rats (p < .05) while LJWES supplementation amended (p < .05) them. Liver fibrosis scores, collagen deposition, and alpha-smooth muscle actin deposition in TAA-treated rats were also decreased by LJWES supplementation (p < .05). To sum up, LJWES could be a potential hepatoprotective agent against liver fibrogenesis by enhancing antioxidant ability, downregulating inflammation in livers, and reducing apoptosis in hepatocytes.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Liver , Hepatocytes , Flavonoids
3.
ACS Nano ; 15(6): 9746-9758, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34080827

ABSTRACT

Flexible, breathable, and degradable pressure sensors with excellent sensing performance are drawing tremendous attention for various practical applications in wearable artificial skins, healthcare monitoring, and artificial intelligence due to their flexibility, breathability, lightweight, decreased electronic rubbish, and environmentally friendly impact. However, traditional plastic or elastomer substrates with impermeability, uncomfortableness, mechanical mismatches, and nondegradability greatly restricted their practical applications. Therefore, the fabrication of such pressure sensors with high flexibility, facile degradability, and breathability is still a critical challenge and highly desired. Herein, we present a wearable, breathable, degradable, and highly sensitive MXene/protein nanocomposites-based pressure sensor. The fabricated MXene/protein-based pressure sensor is assembled from a breathable conductive MXene coated silk fibroin nanofiber (MXene-SF) membrane and a silk fibroin nanofiber membrane patterned with a MXene ink-printed (MXene ink-SF) interdigitated electrode, which can serve as the sensing layer and the electrode layer, respectively. The assembled pressure sensor exhibits a wide sensing range (up to 39.3 kPa), high sensitivity (298.4 kPa-1 for 1.4-15.7 kPa; 171.9 kPa-1 for 15.7-39.3 kPa), fast response/recovery time (7/16 ms), reliable breathability, excellent cycling stability over 10 000 cycles, good biocompatibility, and robust degradability. Furthermore, it shows great sensing performance in monitoring human psychological signals, acting as an artificial skin for the quantitative illustration of pressure distribution, and wireless biomonitoring in real time. Considering the biodegradable and breathable features, the sensor may become promising to find potential applications in smart electronic skins, human motion detection, disease diagnosis, and human-machine interaction.


Subject(s)
Nanocomposites , Wearable Electronic Devices , Artificial Intelligence , Humans , Solvents , Titanium
4.
ACS Nano ; 15(4): 7765-7773, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33769046

ABSTRACT

Conductive hydrogels have emerged as promising material candidates for epidermal sensors due to their similarity to biological tissues, good wearability, and high accuracy of information acquisition. However, it is difficult to simultaneously achieve conductive hydrogel-based epidermal sensors with reliable healability for long-term usage, robust mechanical property, environmental degradability for decreased electronic waste, and sensing capability of the physiological stimuli and the electrophysiological signals. Herein, we propose the synthesis strategy of a multifunctional epidermal sensor based on the highly stretchable, self-healing, degradable, and biocompatible nanocomposite hydrogel, which is fabricated from the conformal coating of a MXene (Ti3C2Tx) network by the hydrogel polymer networks involving poly(acrylic acid) and amorphous calcium carbonate. The epidermal sensor can be employed to sensitively detect human motions with the fast response time (20 ms) and to serve as electronic skins for wirelessly monitoring the electrophysiological signals (such as the electromyogram and electrocardiogram signals). Meanwhile, the multifunctional epidermal sensor could be degraded in phosphate buffered saline solution, which could not cause any pollution to the environment. This line of research work sheds light on the fabrication of the healable, degradable, and electrophysiological signal-sensitive conductive hydrogel-based epidermal sensors with potential applications in human-machine interactions, healthy diagnosis, and smart robot prosthesis devices.


Subject(s)
Hydrogels , Wearable Electronic Devices , Electric Conductivity , Humans , Nanogels , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL