Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(16): 161802, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925710

ABSTRACT

We present a new measurement of the positive muon magnetic anomaly, a_{µ}≡(g_{µ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{µ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{µ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{µ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.

2.
Phys Rev Lett ; 126(14): 141801, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891447

ABSTRACT

We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly a_{µ}≡(g_{µ}-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ω_{a} between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω[over ˜]_{p}^{'} in a spherical water sample at 34.7 °C. The ratio ω_{a}/ω[over ˜]_{p}^{'}, together with known fundamental constants, determines a_{µ}(FNAL)=116 592 040(54)×10^{-11} (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both µ^{+} and µ^{-}, the new experimental average of a_{µ}(Exp)=116 592 061(41)×10^{-11} (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.

SELECTION OF CITATIONS
SEARCH DETAIL
...