Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 905: 167095, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37748607

ABSTRACT

Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.


Subject(s)
Allergens , Ambrosia , Humans , Europe , Pollen
2.
J Appl Ecol ; 58(4): 718-730, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33883780

ABSTRACT

Plant pathogens are introduced to new geographical regions ever more frequently as global connectivity increases. Predicting the threat they pose to plant health can be difficult without in-depth knowledge of behaviour, distribution and spread. Here, we evaluate the potential for using biological traits and phylogeny to predict global threats from emerging pathogens.We use a species-level trait database and phylogeny for 179 Phytophthora species: oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. We compile host and distribution reports for Phytophthora species across 178 countries and evaluate the power of traits, phylogeny and time since description (reflecting species-level knowledge) to explain and predict their international transport, maximum latitude and host breadth using Bayesian phylogenetic generalised linear mixed models.In the best-performing models, traits, phylogeny and time since description together explained up to 90%, 97% and 87% of variance in number of countries reached, latitudinal limits and host range, respectively. Traits and phylogeny together explained up to 26%, 41% and 34% of variance in the number of countries reached, maximum latitude and host plant families affected, respectively, but time since description had the strongest effect.Root-attacking species were reported in more countries, and on more host plant families than foliar-attacking species. Host generalist pathogens had thicker-walled resting structures (stress-tolerant oospores) and faster growth rates at their optima. Cold-tolerant species are reported in more countries and at higher latitudes, though more accurate interspecific empirical data are needed to confirm this finding. Policy implications. We evaluate the potential of an evolutionary trait-based framework to support horizon-scanning approaches for identifying pathogens with greater potential for global-scale impacts. Potential future threats from Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x incrassata, P. amnicola and P. aquimorbida, which are recently described, possibly under-reported species, with similar traits and/or phylogenetic proximity to other high-impact species. Priority traits to measure for emerging species may be thermal minima, oospore wall index and growth rate at optimum temperature. Trait-based horizon-scanning approaches would benefit from the development of international and cross-sectoral collaborations to deliver centralised databases incorporating pathogen distributions, traits and phylogeny.

3.
Proc Biol Sci ; 288(1948): 20210032, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33823665

ABSTRACT

Ecosystems face multiple, potentially interacting, anthropogenic pressures that can modify biodiversity and ecosystem functioning. Using a bryophyte-microarthropod microecosystem we tested the combined effects of habitat loss, episodic heat-shocks and an introduced non-native apex predator on ecosystem function (chlorophyll fluorescence as an indicator of photosystem II function) and microarthropod communities (abundance and body size). The photosynthetic function was degraded by the sequence of heat-shock episodes, but unaffected by microecosystem patch size or top-down pressure from the introduced predator. In small microecosystem patches without the non-native predator, Acari abundance decreased with heat-shock frequency, while Collembola abundance increased. These trends disappeared in larger microecosystem patches or when predators were introduced, although Acari abundance was lower in large patches that underwent heat-shocks and were exposed to the predator. Mean assemblage body length (Collembola) was reduced independently in small microecosystem patches and with greater heat-shock frequency. Our experimental simulation of episodic heatwaves, habitat loss and non-native predation pressure in microecosystems produced evidence of individual and potentially synergistic and antagonistic effects on ecosystem function and microarthropod communities. Such complex outcomes of interactions between multiple stressors need to be considered when assessing anthropogenic risks for biota and ecosystem functioning.


Subject(s)
Arthropods , Ecosystem , Animals , Biodiversity , Food Chain , Hot Temperature , Predatory Behavior
4.
Water Res ; 196: 116981, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33770676

ABSTRACT

Despite advances in conceptual understanding, single-stressor abatement approaches remain common in the management of fresh waters, even though they can produce unexpected ecological responses when multiple stressors interact. Here we identify limitations restricting the development of multiple-stressor management strategies and address these, bridging theory and practice, within a novel empirical framework. Those critical limitations include that (i) monitoring schemes fall short of accounting for theory on relationships between multiple-stressor interactions and ecological responses, (ii) current empirical modelling approaches neglect the prevalence and intensity of multiple-stressor interactions, and (iii) mechanisms of stressor interactions are often poorly understood. We offer practical recommendations for the use of empirical models and experiments to predict the effects of freshwater degradation in response to changes in multiple stressors, demonstrating this approach in a case study. Drawing on our framework, we offer practical recommendations to support the development of effective management strategies in three general multiple-stressor scenarios.


Subject(s)
Ecosystem , Fresh Water , Rivers
5.
Phytopathology ; 110(11): 1740-1750, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32954988

ABSTRACT

In order to prevent and control the emergence of biosecurity threats such as vector-borne diseases of plants, it is vital to understand drivers of entry, establishment, and spatiotemporal spread, as well as the form, timing, and effectiveness of disease management strategies. An inherent challenge for policy in combatting emerging disease is the uncertainty associated with intervention planning in areas not yet affected, based on models and data from current outbreaks. Following the recent high-profile emergence of the bacterium Xylella fastidiosa in a number of European countries, we review the most pertinent epidemiological uncertainties concerning the dynamics of this bacterium in novel environments. To reduce the considerable ecological and socio-economic impacts of these outbreaks, eco-epidemiological research in a broader range of environmental conditions needs to be conducted and used to inform policy to enhance disease risk assessment, and support successful policy-making decisions. By characterizing infection pathways, we can highlight the uncertainties that surround our knowledge of this disease, drawing attention to how these are amplified when trying to predict and manage outbreaks in currently unaffected locations. To help guide future research and decision-making processes, we invited experts in different fields of plant pathology to identify data to prioritize when developing pest risk assessments. Our analysis revealed that epidemiological uncertainty is mainly driven by the large variety of hosts, vectors, and bacterial strains, leading to a range of different epidemiological characteristics further magnified by novel environmental conditions. These results offer new insights on how eco-epidemiological analyses can enhance understanding of plant disease spread and support management recommendations.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Xylella , Europe , Plant Diseases , Uncertainty
6.
Trends Ecol Evol ; 33(12): 958-970, 2018 12.
Article in English | MEDLINE | ID: mdl-30314915

ABSTRACT

Humans fundamentally affect dispersal, directly by transporting individuals and indirectly by altering landscapes and natural vectors. This human-mediated dispersal (HMD) modifies long-distance dispersal, changes dispersal paths, and overall benefits certain species or genotypes while disadvantaging others. HMD is leading to radical changes in the structure and functioning of spatial networks, which are likely to intensify as human activities increase in scope and extent. Here, we provide an overview to guide research into HMD and the resulting rewiring of spatial networks, making predictions about the ecological and evolutionary consequences and how these vary according to spatial scale and the traits of species. Future research should consider HMD holistically, assessing the range of direct and indirect processes to understand the complex impacts on eco-evolutionary dynamics.


Subject(s)
Animal Distribution , Biodiversity , Human Activities , Plant Dispersal , Biological Evolution , Humans
7.
Ecology ; 98(6): 1671-1680, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369815

ABSTRACT

Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual populations. Ignoring such effects could substantially underestimate the extent and impact of invasions.


Subject(s)
Acclimatization , Introduced Species , Models, Theoretical , Ambrosia , Ecosystem , Europe , Temperature
8.
Biol Invasions ; 19(6): 1825-1837, 2017.
Article in English | MEDLINE | ID: mdl-32025190

ABSTRACT

Xylella fastidiosa is an important plant pathogen that attacks several plants of economic importance. Once restricted to the Americas, the bacterium, which causes olive quick decline syndrome, was discovered near Lecce, Italy in 2013. Since the initial outbreak, it has invaded 23,000 ha of olives in the Apulian Region, southern Italy, and is of great concern throughout Mediterranean basin. Therefore, predicting its spread and estimating the efficacy of control are of utmost importance. As data on this invasive infectious disease are poor, we have developed a spatially-explicit simulation model for X. fastidiosa to provide guidance for predicting spread in the early stages of invasion and inform management strategies. The model qualitatively and quantitatively predicts the patterns of spread. We model control zones currently employed in Apulia, showing that increasing buffer widths decrease infection risk beyond the control zone, but this may not halt the spread completely due to stochastic long-distance jumps caused by vector dispersal. Therefore, management practices should aim to reduce vector long-distance dispersal. We find optimal control scenarios that minimise control effort while reducing X. fastidiosa spread maximally-suggesting that increasing buffer zone widths should be favoured over surveillance efforts as control budgets increase. Our model highlights the importance of non-olive hosts which increase the spread rate of the disease and may lead to an order of magnitude increase in risk. Many aspects of X. fastidiosa disease invasion remain uncertain and hinder forecasting; we recommend future studies investigating quantification of the infection growth rate, and short and long distance dispersal.

9.
Glob Chang Biol ; 22(9): 3067-79, 2016 09.
Article in English | MEDLINE | ID: mdl-26748862

ABSTRACT

Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion.


Subject(s)
Ambrosia , Climate Change , Introduced Species , Models, Theoretical , Europe
10.
PLoS One ; 9(2): e88156, 2014.
Article in English | MEDLINE | ID: mdl-24533071

ABSTRACT

Ambrosia artemisiifolia is an invasive weed in Europe with highly allergenic pollen. Populations are currently well established and cause significant health problems in the French Rhône valley, Austria, Hungary and Croatia but transient or casual introduced populations are also found in more Northern and Eastern European countries. A process-based model of weed growth, competition and population dynamics was used to predict the future potential for range expansion of A.artemisiifolia under climate change scenarios. The model predicted a northward shift in the available climatic niche for populations to establish and persist, creating a risk of increased health problems in countries including the UK and Denmark. This was accompanied by an increase in relative pollen production at the northern edge of its range. The southern European limit for A.artemisiifolia was not expected to change; populations continued to be limited by drought stress in Spain and Southern Italy. The process-based approach to modelling the impact of climate change on plant populations has the advantage over correlative species distribution models of being able to capture interactions of climate, land use and plant competition at the local scale. However, for this potential to be fully realised, additional empirical data are required on competitive dynamics of A.artemisiifolia in different crops and ruderal plant communities and its capacity to adapt to local conditions.


Subject(s)
Ambrosia/growth & development , Climate Change , Introduced Species , Algorithms , Computer Simulation , Ecosystem , Europe , Geography , Hypersensitivity, Immediate/prevention & control , Models, Theoretical , Pollen , Population Dynamics
11.
Glob Chang Biol ; 20(1): 192-202, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24038855

ABSTRACT

Accurate models for species' distributions are needed to forecast the progress and impacts of alien invasive species and assess potential range-shifting driven by global change. Although this has traditionally been achieved through data-driven correlative modelling, robustly extrapolating these models into novel climatic conditions is challenging. Recently, a small number of process-based or mechanistic distribution models have been developed to complement the correlative approaches. However, tests of these models are lacking, and there are very few process-based models for invasive species. We develop a method for estimating the range of a globally invasive species, common ragweed (Ambrosia artemisiifolia L.), from a temperature- and photoperiod-driven phenology model. The model predicts the region in which ragweed can reach reproductive maturity before frost kills the adult plants in autumn. This aligns well with the poleward and high-elevation range limits in its native North America and in invaded Europe, clearly showing that phenological constraints determine the cold range margins of the species. Importantly, this is a 'forward' prediction made entirely independently of the distribution data. Therefore, it allows a confident and biologically informed forecasting of further invasion and range shifting driven by climate change. For ragweed, such forecasts are extremely important as the species is a serious crop weed and its airborne pollen is a major cause of allergy and asthma in humans. Our results show that phenology can be a key determinant of species' range margins, so integrating phenology into species distribution models offers great potential for the mechanistic modelling of range dynamics.


Subject(s)
Ambrosia , Introduced Species , Models, Theoretical , Climate Change , Ecosystem , Europe , North America , Temperature , Time Factors
12.
Glob Chang Biol ; 19(11): 3463-71, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23661383

ABSTRACT

Mountain plants are considered among the species most vulnerable to climate change, especially at high latitudes where there is little potential for poleward or uphill dispersal. Satellite monitoring can reveal spatiotemporal variation in vegetation activity, offering a largely unexploited potential for studying responses of montane ecosystems to temperature and predicting phenological shifts driven by climate change. Here, a novel remote-sensing phenology approach is developed that advances existing techniques by considering variation in vegetation activity across the whole year, rather than just focusing on event dates (e.g. start and end of season). Time series of two vegetation indices (VI), normalized difference VI (NDVI) and enhanced VI (EVI) were obtained from the moderate resolution imaging spectroradiometer MODIS satellite for 2786 Scottish mountain summits (600-1344 m elevation) in the years 2000-2011. NDVI and EVI time series were temporally interpolated to derive values on the first day of each month, for comparison with gridded monthly temperatures from the preceding period. These were regressed against temperature in the previous months, elevation and their interaction, showing significant variation in temperature sensitivity between months. Warm years were associated with high NDVI and EVI in spring and summer, whereas there was little effect of temperature in autumn and a negative effect in winter. Elevation was shown to mediate phenological change via a magnification of temperature responses on the highest mountains. Together, these predict that climate change will drive substantial changes in mountain summit phenology, especially by advancing spring growth at high elevations. The phenological plasticity underlying these temperature responses may allow long-lived alpine plants to acclimate to warmer temperatures. Conversely, longer growing seasons may facilitate colonization and competitive exclusion by species currently restricted to lower elevations. In either case, these results show previously unreported seasonal and elevational variation in the temperature sensitivity of mountain vegetation activity.


Subject(s)
Climate Change , Ecosystem , Plant Development , Altitude , Linear Models , Remote Sensing Technology , Scotland , Seasons , Temperature
13.
J Anim Ecol ; 78(2): 476-84, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19021784

ABSTRACT

1. Population cycles are mostly thought to arise through extrinsic rather than intrinsic processes. However, in red grouse (Lagopus lagopus scoticus), intrinsic male territoriality has been proposed as a driver of the cycles, possibly in conjunction with an extrinsic interaction with specialist parasitic worms. Here we examine how harvesting and environmental noise may also interact with territoriality to determine how grouse populations cycle. 2. A stochastic model of grouse dynamics based on the territoriality hypothesis is developed, including harvesting and the effects of nonterritorial birds on aggressiveness. Cycles are detected in 97% of populations simulated over realistic parameter ranges, and these exhibit similar statistical properties to those reported in studies of multiple grouse populations. As observed, cycle periods are shorter at higher breeding productivities. 3. The model demonstrates the destabilizing influence of delayed density-dependent territorial aggressiveness. Cycle amplitudes are higher when annual changes in aggression are larger and when nonterritorial males provoke greater aggression. Intriguingly, the model suggests how an interaction between aggressiveness and parasites may operate. It is known that males with high worm burdens show dramatic decreases in aggressiveness in the year following a peak in territoriality. When this is included in the model, via larger crashes in aggression, amplitudes are higher, despite a reduction in overall aggressiveness. 4. Environmental stochasticity interacts with territoriality to determine the form of the cycles, but this is mediated through its 'colour' or temporal autocorrelation. For example, uncorrelated white noise increases amplitudes, while autocorrelated red noise has the opposite effect. However, noise increases cycle periods whatever the colour. 5. Harvesting occurs before territorial competition. This reduces the pool of males competing for territories and so increases recruitment and population densities. However, crashes can then be more extreme so cycle amplitudes are higher. With harvesting at ~150% of current typical levels, which is within observed variation, the dynamics exhibit a sharp transition to a state where cyclicity is reduced, periods are shorter and amplitudes lower. 6. The model suggests that to understand regional variation in red grouse cycles, interactions between territoriality, productivity, harvesting and noise must be considered.


Subject(s)
Galliformes/physiology , Territoriality , Aggression , Animals , Female , Male , Models, Biological , Population Dynamics , Sex Characteristics , Stochastic Processes , Time Factors
14.
Oecologia ; 154(1): 55-64, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17661088

ABSTRACT

Movement underpins animal spatial ecology and is often modelled as habitat-dependent correlated random walks. Here, we develop such a model for the flightless tansy leaf beetle Chrysolina graminis moving within and between patches of its host plant tansy Tanacetum vulgare. To parameterize the model, beetle movement paths on timescales of minutes were observed in uniform plots of tansy and inter-patch matrix (meadow) vegetation. Movement lasted longer, covered greater distances and had narrower turning angles in the matrix. Simulations of the model emulated an independent two-season multi-patch mark-resight study at daily timescales and included variable boundary-mediated behaviour affecting the probability of leaving habitat patches. As boundaries in the model became stronger there were disproportionately large decreases in net displacements, inter-patch movements and the proportion of beetles in the matrix. The model produced realistic patterns of population-level displacement over periods up to 13 days with fully permeable boundaries for one dataset and strong boundaries for the other. This may be explained by the heights of the tansy patches in each study, as beetles will be unable to cross the boundary near the top of a patch that emerges from the matrix. The simulations demonstrate the important effects of boundary behaviour on displacement patterns and indicate temporal and spatial variability in permeability. Realistic models of movement must therefore include behaviour at habitat boundaries.


Subject(s)
Behavior, Animal/physiology , Coleoptera/physiology , Ecosystem , Territoriality , Animals , Models, Biological , Motor Activity , Time Factors
15.
J Anim Ecol ; 76(1): 36-44, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17184351

ABSTRACT

1. Dispersal is a fundamental ecological process, so spatial models require realistic dispersal kernels. We compare five different forms for the dispersal kernel of the tansy beetle Chrysolina graminis moving between patches of its host-plant (tansy Tanacetum vulgare) in a riparian landscape. 2. Multi-patch mark-recapture data were collected every 2 weeks over 2 years within a large network of patches and from 2226 beetles. Dispersal was common (28.4% of 880 recaptures after a fortnight) and was more likely over longer intervals, out of small patches, for females and during flooding. Interpatch movement rates did not differ between years and exhibited no density dependence. Dispersal distances were similar for males and females, in both years and over all intervals, with a median dispersal distance of just 9.8 m, although a maximum of 856 m was recorded. 3. A model of dispersal, where patches competed for dispersers based on their size and distance from the beetle's source patch (scaled by the dispersal kernel) was fitted to the field data with a maximum likelihood procedure and each of five alternative kernels. The best fitting had relatively extended tails of long-distance dispersal, while Gaussian and negative exponential kernels performed worst. 4. The model suggests that females disperse more commonly than males and that both are strongly attracted to large patches but do not differ between years, which are consistent with the empirical results. Model-predicted emigration and immigration rates and dispersal phenologies match those observed, suggesting that the model captured the major drivers of tansy beetle dispersal. 5. Although negative exponential and Gaussian kernels are widely used for their simplicity, we suggest that these should not be the models of automatic choice, and that fat-tailed kernels with relatively higher proportions of long-distance dispersal may be more realistic.


Subject(s)
Behavior, Animal/physiology , Coleoptera/physiology , Animals , Ecosystem , Female , Male , Models, Biological , Population Density , Population Dynamics , Tanacetum
SELECTION OF CITATIONS
SEARCH DETAIL
...