Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Clin Invest ; 134(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357931

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Subject(s)
Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor , NAD , Female , Pregnancy , Humans , Mice , Animals , NAD/metabolism , Niacinamide , Phenotype , Metabolome , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism
2.
Curr Rheumatol Rep ; 26(1): 12-23, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015334

ABSTRACT

PURPOSE OF REVIEW: Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) is a rare, multisystem, autoimmune disease characterised by microvascular inflammation. Over the past 20 years, advances in immunological management have improved short-term patient outcomes. Longer-term patient outcomes remain poor with cardiovascular disease now the leading cause of death in AAV. Here, we examine the potential pathways that contribute to the increased risk of cardiovascular disease in AAV and the current evidence to manage this risk. RECENT FINDINGS: The incidence of cardiovascular disease in AAV exceeds that expected by traditional risk factors alone, suggesting a contribution from disease-specific factors. Similarly, it is unclear how different immunosuppressive therapies contribute to and modify cardiovascular risk, and there is a paucity of data examining the efficacy of traditional cardioprotective medications in AAV. There is a lack of evidence-based cardiovascular risk assessment tools and cardioprotective therapies in patients with AAV which should be addressed to improve long-term outcomes.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Cardiovascular Diseases , Humans , Cardiovascular Diseases/etiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Inflammation/complications , Risk Factors , Antibodies, Antineutrophil Cytoplasmic , Cytoplasm/metabolism
3.
J Am Soc Nephrol ; 35(3): 335-346, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38082490

ABSTRACT

SIGNIFICANCE STATEMENT: Reliable prediction tools are needed to personalize treatment in ANCA-associated GN. More than 1500 patients were collated in an international longitudinal study to revise the ANCA kidney risk score. The score showed satisfactory performance, mimicking the original study (Harrell's C=0.779). In the development cohort of 959 patients, no additional parameters aiding the tool were detected, but replacing the GFR with creatinine identified an additional cutoff. The parameter interstitial fibrosis and tubular atrophy was modified to allow wider access, risk points were reweighted, and a fourth risk group was created, improving predictive ability (C=0.831). In the validation, the new model performed similarly well with excellent calibration and discrimination ( n =480, C=0.821). The revised score optimizes prognostication for clinical practice and trials. BACKGROUND: Reliable prediction tools are needed to personalize treatment in ANCA-associated GN. A retrospective international longitudinal cohort was collated to revise the ANCA renal risk score. METHODS: The primary end point was ESKD with patients censored at last follow-up. Cox proportional hazards were used to reweight risk factors. Kaplan-Meier curves, Harrell's C statistic, receiver operating characteristics, and calibration plots were used to assess model performance. RESULTS: Of 1591 patients, 1439 were included in the final analyses, 2:1 randomly allocated per center to development and validation cohorts (52% male, median age 64 years). In the development cohort ( n =959), the ANCA renal risk score was validated and calibrated, and parameters were reinvestigated modifying interstitial fibrosis and tubular atrophy allowing semiquantitative reporting. An additional cutoff for kidney function (K) was identified, and serum creatinine replaced GFR (K0: <250 µ mol/L=0, K1: 250-450 µ mol/L=4, K2: >450 µ mol/L=11 points). The risk points for the percentage of normal glomeruli (N) and interstitial fibrosis and tubular atrophy (T) were reweighted (N0: >25%=0, N1: 10%-25%=4, N2: <10%=7, T0: none/mild or <25%=0, T1: ≥ mild-moderate or ≥25%=3 points), and four risk groups created: low (0-4 points), moderate (5-11), high (12-18), and very high (21). Discrimination was C=0.831, and the 3-year kidney survival was 96%, 79%, 54%, and 19%, respectively. The revised score performed similarly well in the validation cohort with excellent calibration and discrimination ( n =480, C=0.821). CONCLUSIONS: The updated score optimizes clinicopathologic prognostication for clinical practice and trials.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Humans , Male , Middle Aged , Female , Longitudinal Studies , Retrospective Studies , Kidney , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Creatinine , Risk Factors , Fibrosis , Atrophy
5.
Differentiation ; 128: 1-12, 2022.
Article in English | MEDLINE | ID: mdl-36194927

ABSTRACT

Myhre syndrome is a connective tissue disorder characterized by congenital cardiovascular, craniofacial, respiratory, skeletal, and cutaneous anomalies as well as intellectual disability and progressive fibrosis. It is caused by germline variants in the transcriptional co-regulator SMAD4 that localize at two positions within the SMAD4 protein, I500 and R496, with I500 V/T/M variants more commonly identified in individuals with Myhre syndrome. Here we assess the functional impact of SMAD4-I500V variant, identified in two previously unpublished individuals with Myhre syndrome, and provide novel insights into the molecular mechanism of SMAD4-I500V dysfunction. We show that SMAD4-I500V can dimerize, but its transcriptional activity is severely compromised. Our data show that SMAD4-I500V acts dominant-negatively on SMAD4 and on receptor-regulated SMADs, affecting transcription of target genes. Furthermore, SMAD4-I500V impacts the transcription and function of crucial developmental transcription regulator, NKX2-5. Overall, our data reveal a dominant-negative model of disease for SMAD4-I500V where the function of SMAD4 encoded on the remaining allele, and of co-factors, are perturbed by the continued heterodimerization of the variant, leading to dysregulation of TGF and BMP signaling. Our findings not only provide novel insights into the mechanism of Myhre syndrome pathogenesis but also extend the current knowledge of how pathogenic variants in SMAD proteins cause disease.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Humans , Intellectual Disability/genetics , Smad4 Protein/genetics , Mutation , Hand Deformities, Congenital/genetics , Transforming Growth Factor beta/genetics
6.
STAR Protoc ; 3(1): 101097, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35535162

ABSTRACT

Quantitative assessment of post-ischemic cardiac remodeling is often hampered by tissue complexity and structural heterogeneity of the scar. Automated quantification of microscopy images offers an unbiased approach to reduce inter-observer variability. Here, we present a CellProfiler-based analytical pipeline for the high-throughput analysis of confocal images to quantify post-ischemic cardiac parameters. We describe image preprocessing and the quantification of capillary rarefaction, immune cell infiltration, cell death, and proliferating fibroblasts. This protocol can be adapted to other tissue types. For complete details on the use and execution of this profile, please refer to Janbandhu et al. (2021).


Subject(s)
Heart , Image Processing, Computer-Assisted , Cicatrix , Humans , Image Processing, Computer-Assisted/methods
7.
STAR Protoc ; 3(1): 101055, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35005637

ABSTRACT

Following myocardial infarction, damaged myocardium is replaced with a fibrotic scar that preserves cardiac structural integrity. Scar area measured from sample 2D images of serial heart sections does not faithfully measure the extent of fibrosis due to structural heterogeneity caused by tissue dynamics. Here, we present an X-ray microcomputed tomography (micro-CT) workflow that generates accurate volumetric quantification of scar and surviving myocardium in infarcted mouse hearts. This workflow could be applied to other fibrotic organs or hearts from other species. For complete details on the use and execution of this protocol, please refer to Janbandhu et al. (2021).


Subject(s)
Cicatrix , Myocardial Infarction , Animals , Cicatrix/pathology , Fibrosis , Mice , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , X-Ray Microtomography/methods
8.
Rheumatology (Oxford) ; 61(5): 1966-1974, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34505902

ABSTRACT

OBJECTIVES: ANCA-associated vasculitis (AAV) is a rare autoimmune disorder that commonly involves the kidney. Early identification of kidney involvement, assessing treatment-response and predicting outcome are important clinical challenges. Here, we assessed the potential utility of interval kidney biopsy in AAV. METHODS: In a tertiary referral centre with a dedicated vasculitis service, we identified patients with AAV who had undergone interval kidney biopsy, defined as a repeat kidney biopsy (following an initial biopsy showing active AAV) undertaken to determine the histological response in the kidney following induction immunosuppression. We analysed biochemical, histological and outcome data, including times to kidney failure and death for all patients. RESULTS: We identified 57 patients with AAV who underwent at least one interval kidney biopsy (59 interval biopsies in total; median time to interval biopsy ∼130 days). Of the 59 interval biopsies performed, 24 (41%) patients had clinically suspected active disease at time of biopsy which was confirmed histologically in only 42% of cases; 35 (59%) patients were in clinical disease-remission, and this was correct in 97% of cases. The clinician's impression was incorrect in one in four patients. Hematuria at interval biopsy did not correlate with histological activity. Interval biopsy showed fewer acute lesions and more chronic damage compared with initial biopsy and led to immunosuppressive treatment-change in 75% (44/59) of patients. Clinical risk prediction tools tended to operate better using interval biopsy data. CONCLUSION: Interval kidney biopsy is useful for determining treatment-response and subsequent disease management in AAV. It may provide better prognostic information than initial kidney biopsy and should be considered for inclusion into future clinical trials and treatment protocols for patients with AAV.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Kidney Failure, Chronic , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Antibodies, Antineutrophil Cytoplasmic , Biopsy/methods , Female , Humans , Immunosuppressive Agents/therapeutic use , Kidney/pathology , Male , Retrospective Studies
10.
Hum Mutat ; 42(7): 862-876, 2021 07.
Article in English | MEDLINE | ID: mdl-33942433

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in over 400 cellular reactions. During embryogenesis, mammals synthesize NAD de novo from dietary l -tryptophan via the kynurenine pathway. Biallelic, inactivating variants in three genes encoding enzymes of this biosynthesis pathway (KYNU, HAAO, and NADSYN1) disrupt NAD synthesis and have been identified in patients with multiple malformations of the heart, kidney, vertebrae, and limbs; these patients have Congenital NAD Deficiency Disorder HAAO and four families with biallelic variants in KYNU. These patients present similarly with multiple malformations of the heart, kidney, vertebrae, and limbs, of variable severity. We show that each variant identified in these patients results in loss-of-function, revealed by a significant reduction in NAD levels via yeast genetic complementation assays. For the first time, missense mutations are identified as a cause of malformation and shown to disrupt enzyme function. These missense and frameshift variants cause moderate to severe NAD deficiency in yeast, analogous to insufficient synthesized NAD in patients. We hereby expand the genotypic and corresponding phenotypic spectrum of Congenital NAD Deficiency Disorder.


Subject(s)
NAD , Spine , Animals , Genotype , Humans , Mammals , Mutation, Missense , Spine/abnormalities
11.
Hum Mol Genet ; 29(22): 3662-3678, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33276377

ABSTRACT

The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Haploinsufficiency/genetics , Kidney/metabolism , RNA Splicing Factors/genetics , Abnormalities, Multiple/pathology , Anal Canal/abnormalities , Anal Canal/pathology , Animals , Esophagus/abnormalities , Esophagus/metabolism , Esophagus/pathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Heterozygote , Humans , Kidney/abnormalities , Kidney/pathology , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Loss of Function Mutation/genetics , Mice , RNA Splicing/genetics , Spine/abnormalities , Spine/pathology , Trachea/abnormalities , Trachea/pathology
12.
Am J Med Genet A ; 182(7): 1664-1672, 2020 07.
Article in English | MEDLINE | ID: mdl-32369272

ABSTRACT

Vertebral malformations (VMs) are caused by alterations in somitogenesis and may occur in association with other congenital anomalies. The genetic etiology of most VMs remains unknown and their identification may facilitate the development of novel therapeutic and prevention strategies. Exome sequencing was performed on both the discovery cohort of nine unrelated probands from the USA with VMs and the replication cohort from China (Deciphering Disorders Involving Scoliosis & COmorbidities study). The discovery cohort was analyzed using the PhenoDB analysis tool. Heterozygous and homozygous, rare and functional variants were selected and evaluated for their ClinVar, HGMD, OMIM, GWAS, mouse model phenotypes, and other annotations to identify the best candidates. Genes with candidate variants in three or more probands were selected. The replication cohort was analyzed by another in-house developed pipeline. We identified rare heterozygous variants in KIAA1217 in four out of nine probands in the discovery cohort and in five out of 35 probands in the replication cohort. Collectively, we identified 11 KIAA1217 rare variants in 10 probands, three of which have not been described in gnomAD and one of which is a nonsense variant. We propose that genetic variations of KIAA1217 may contribute to the etiology of VMs.


Subject(s)
Proteins/genetics , Spinal Diseases/genetics , Adolescent , Cervical Vertebrae/abnormalities , Child , Codon, Nonsense , Databases, Genetic , Female , Heterozygote , Homozygote , Humans , Male , Spinal Diseases/etiology , Thoracic Vertebrae/abnormalities
13.
Hum Mol Genet ; 29(4): 566-579, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31813956

ABSTRACT

Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.


Subject(s)
Gene-Environment Interaction , Genetic Predisposition to Disease , Genomics/methods , Heart Defects, Congenital/pathology , Mutation , Receptor, Notch1/genetics , Animals , Case-Control Studies , Female , Heart Defects, Congenital/etiology , Heart Defects, Congenital/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Exome Sequencing
14.
Am J Hum Genet ; 106(1): 129-136, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883644

ABSTRACT

Birth defects occur in up to 3% of all live births and are the leading cause of infant death. Here we present five individuals from four unrelated families, individuals who share similar phenotypes with disease-causal bi-allelic variants in NADSYN1, encoding NAD synthetase 1, the final enzyme of the nicotinamide adenine dinucleotide (NAD) de novo synthesis pathway. Defects range from the isolated absence of both kidneys to multiple malformations of the vertebrae, heart, limbs, and kidney, and no affected individual survived for more than three months postnatally. NAD is an essential coenzyme for numerous cellular processes. Bi-allelic loss-of-function mutations in genes required for the de novo synthesis of NAD were previously identified in individuals with multiple congenital abnormalities affecting the heart, kidney, vertebrae, and limbs. Functional assessments of NADSYN1 missense variants, through a combination of yeast complementation and enzymatic assays, show impaired enzymatic activity and severely reduced NAD levels. Thus, NADSYN1 represents an additional gene required for NAD synthesis during embryogenesis, and NADSYN1 has bi-allelic missense variants that cause NAD deficiency-dependent malformations. Our findings expand the genotypic spectrum of congenital NAD deficiency disorders and further implicate mutation of additional genes involved in de novo NAD synthesis as potential causes of complex birth defects.


Subject(s)
Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , Congenital Abnormalities/etiology , Multiple Organ Failure/etiology , Mutation, Missense , NAD/deficiency , Alleles , Amino Acid Sequence , Congenital Abnormalities/pathology , Female , Genotype , Gestational Age , Humans , Infant , Infant, Newborn , Male , Multiple Organ Failure/pathology , Pedigree , Phenotype , Pregnancy , Sequence Homology
15.
Hum Mol Genet ; 29(7): 1068-1082, 2020 05 08.
Article in English | MEDLINE | ID: mdl-31625560

ABSTRACT

Pre-B cell leukemia factor 1 (PBX1) is an essential developmental transcription factor, mutations in which have recently been associated with CAKUTHED syndrome, characterized by multiple congenital defects including congenital heart disease (CHD). During analysis of a whole-exome-sequenced cohort of heterogeneous CHD patients, we identified a de novo missense variant, PBX1:c.551G>C p.R184P, in a patient with tetralogy of Fallot with absent pulmonary valve and extra-cardiac phenotypes. Functional analysis of this variant by creating a CRISPR-Cas9 gene-edited mouse model revealed multiple congenital anomalies. Congenital heart defects (persistent truncus arteriosus and ventricular septal defect), hypoplastic lungs, hypoplastic/ectopic kidneys, aplastic adrenal glands and spleen, as well as atretic trachea and palate defects were observed in the homozygous mutant embryos at multiple stages of development. We also observed developmental anomalies in a proportion of heterozygous embryos, suggestive of a dominant mode of inheritance. Analysis of gene expression and protein levels revealed that although Pbx1 transcripts are higher in homozygotes, amounts of PBX1 protein are significantly decreased. Here, we have presented the first functional model of a missense PBX1 variant and provided strong evidence that p.R184P is disease-causal. Our findings also expand the phenotypic spectrum associated with pathogenic PBX1 variants in both humans and mice.


Subject(s)
CRISPR-Cas Systems/genetics , Heart Defects, Congenital/genetics , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Truncus Arteriosus, Persistent/genetics , Adult , Animals , Disease Models, Animal , Exome/genetics , Female , Heart Defects, Congenital/pathology , Heterozygote , Humans , Infant , Male , Mice , Mutation, Missense/genetics , Pedigree , Phenotype , Truncus Arteriosus, Persistent/pathology , Exome Sequencing
16.
Genomics Proteomics Bioinformatics ; 17(5): 540-545, 2019 10.
Article in English | MEDLINE | ID: mdl-31765830

ABSTRACT

Next-generation sequencing (NGS) technologies generate thousands to millions of genetic variants per sample. Identification of potential disease-causal variants is labor intensive as it relies on filtering using various annotation metrics and consideration of multiple pathogenicity prediction scores. We have developed VPOT (variant prioritization ordering tool), a python-based command line tool that allows researchers to create a single fully customizable pathogenicity ranking score from any number of annotation values, each with a user-defined weighting. The use of VPOT can be informative when analyzing entire cohorts, as variants in a cohort can be prioritized. VPOT also provides additional functions to allow variant filtering based on a candidate gene list or by affected status in a family pedigree. VPOT outperforms similar tools in terms of efficacy, flexibility, scalability, and computational performance. VPOT is freely available for public use at GitHub (https://github.com/VCCRI/VPOT/). Documentation for installation along with a user tutorial, a default parameter file, and test data are provided.


Subject(s)
User-Computer Interface , 3-Hydroxyanthranilate 3,4-Dioxygenase/genetics , Algorithms , Databases, Genetic , Heart Diseases/congenital , Heart Diseases/genetics , Humans , Polymorphism, Genetic , Exome Sequencing
17.
Development ; 146(4)2019 02 20.
Article in English | MEDLINE | ID: mdl-30787001

ABSTRACT

Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.


Subject(s)
Gene-Environment Interaction , Heart Defects, Congenital/genetics , Heart/embryology , Homeobox Protein Nkx-2.5/genetics , Homeodomain Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Apoptosis , Cell Proliferation , Embryo, Mammalian/metabolism , Female , Genetic Predisposition to Disease , Heart/diagnostic imaging , Heterozygote , Homeobox Protein Nkx-2.5/physiology , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxygen/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , T-Box Domain Proteins/genetics , Time Factors
18.
Genet Med ; 21(5): 1111-1120, 2019 05.
Article in English | MEDLINE | ID: mdl-30293987

ABSTRACT

PURPOSE: Congenital heart disease (CHD) affects up to 1% of live births. However, a genetic diagnosis is not made in most cases. The purpose of this study was to assess the outcomes of genome sequencing (GS) of a heterogeneous cohort of CHD patients. METHODS: Ninety-seven families with probands born with CHD requiring surgical correction were recruited for genome sequencing. At minimum, a proband-parents trio was sequenced per family. GS data were analyzed via a two-tiered method: application of a high-confidence gene screen (hcCHD), and comprehensive analysis. Identified variants were assessed for pathogenicity using the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines. RESULTS: Clinically relevant genetic variants in known and emerging CHD genes were identified. The hcCHD screen identified a clinically actionable variant in 22% of families. Subsequent comprehensive analysis identified a clinically actionable variant in an additional 9% of families in genes with recent disease associations. Overall, this two-tiered approach provided a clinically relevant variant for 31% of families. CONCLUSIONS: Interrogating GS data using our two-tiered method allowed identification of variants with high clinical utility in a third of our heterogeneous cohort. However, association of emerging genes with CHD etiology, and development of novel technologies for variant assessment and interpretation, will increase diagnostic yield during future reassessment of our GS data.


Subject(s)
Genetic Testing/methods , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Base Sequence/genetics , Chromosome Mapping/methods , Cohort Studies , Exome/genetics , Family , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation/genetics , Parents , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
19.
Circ Genom Precis Med ; 11(3): e001978, 2018 03.
Article in English | MEDLINE | ID: mdl-29555671

ABSTRACT

BACKGROUND: Congenital heart disease (CHD)-structural abnormalities of the heart that arise during embryonic development-is the most common inborn malformation, affecting ≤1% of the population. However, currently, only a minority of cases can be explained by genetic abnormalities. The goal of this study was to identify disease-causal genetic variants in 30 families affected by CHD. METHODS: Whole-exome sequencing was performed with the DNA of multiple family members. We utilized a 2-tiered whole-exome variant screening and interpretation procedure. First, we manually curated a high-confidence list of 90 genes known to cause CHD in humans, identified predicted damaging variants in genes on this list, and rated their pathogenicity using American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: In 3 families (10%), we found pathogenic variants in known CHD genes TBX5, TFAP2B, and PTPN11, explaining the cardiac lesions. Second, exomes were comprehensively analyzed to identify additional predicted damaging variants that segregate with disease in CHD candidate genes. In 10 additional families (33%), likely disease-causal variants were uncovered in PBX1, CNOT1, ZFP36L2, TEK, USP34, UPF2, KDM5A, KMT2C, TIE1, TEAD2, and FLT4. CONCLUSIONS: The pathogenesis of CHD could be explained using our high-confidence CHD gene list for variant filtering in a subset of cases. Furthermore, our unbiased screening procedure of family exomes implicates additional genes and variants in the pathogenesis of CHD, which suggest themselves for functional validation. This 2-tiered approach provides a means of (1) identifying clinically actionable variants and (2) identifying additional disease-causal genes, both of which are essential for improving the molecular diagnosis of CHD.


Subject(s)
Exome/genetics , Genetic Variation , Heart Defects, Congenital/diagnosis , Female , Genetic Testing , Heart Defects, Congenital/genetics , Humans , Male , Polymorphism, Single Nucleotide , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , T-Box Domain Proteins/genetics , Transcription Factor AP-2/genetics , Exome Sequencing
20.
Hum Mol Genet ; 26(24): 4849-4860, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29036646

ABSTRACT

We present eight patients with de novo, deleterious sequence variants in the PBX1 gene. PBX1 encodes a three amino acid loop extension (TALE) homeodomain transcription factor that forms multimeric complexes with TALE and HOX proteins to regulate target gene transcription during development. As previously reported, Pbx1 homozygous mutant mice (Pbx1-/-) develop malformations and hypoplasia or aplasia of multiple organs, including the craniofacial skeleton, ear, branchial arches, heart, lungs, diaphragm, gut, kidneys, and gonads. Clinical findings similar to those in Pbx mutant mice were observed in all patients with varying expressivity and severity, including external ear anomalies, abnormal branchial arch derivatives, heart malformations, diaphragmatic hernia, renal hypoplasia and ambiguous genitalia. All patients but one had developmental delays. Previously reported patients with congenital anomalies affecting the kidney and urinary tract exhibited deletions and loss of function variants in PBX1. The sequence variants in our cases included missense substitutions adjacent to the PBX1 homeodomain (p.Arg184Pro, p.Met224Lys, and p.Arg227Pro) or within the homeodomain (p.Arg234Pro, and p.Arg235Gln), whereas p.Ser262Glnfs*2, and p.Arg288* yielded truncated PBX1 proteins. Functional studies on five PBX1 sequence variants revealed perturbation of intrinsic, PBX-dependent transactivation ability and altered nuclear translocation, suggesting abnormal interactions between mutant PBX1 proteins and wild-type TALE or HOX cofactors. It is likely that the mutations directly affect the transcription of PBX1 target genes to impact embryonic development. We conclude that deleterious sequence variants in PBX1 cause intellectual disability and pleiotropic malformations resembling those in Pbx1 mutant mice, arguing for strong conservation of gene function between these two species.


Subject(s)
Intellectual Disability/genetics , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Adolescent , Adult , Amino Acid Sequence , Animals , Child , Child, Preschool , Female , Genetic Pleiotropy/genetics , Homeodomain Proteins/genetics , Humans , Infant , Infant, Newborn , Male , Mice , Pregnancy , Protein Binding , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...