Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(6): 2709-2724, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36808528

ABSTRACT

The malaria parasite Plasmodium falciparum replicates via schizogony: an unusual type of cell cycle involving asynchronous replication of multiple nuclei within the same cytoplasm. Here, we present the first comprehensive study of DNA replication origin specification and activation during Plasmodium schizogony. Potential replication origins were abundant, with ORC1-binding sites detected every ∼800 bp. In this extremely A/T-biased genome, the sites were biased towards areas of higher G/C content, and contained no specific sequence motif. Origin activation was then measured at single-molecule resolution using newly developed DNAscent technology: a powerful method of detecting replication fork movement via base analogues in DNA sequenced on the Oxford Nanopore platform. Unusually, origins were preferentially activated in areas of low transcriptional activity, and replication forks also moved fastest through lowly transcribed genes. This contrasts with the way that origin activation is organised in other systems, such as human cells, and suggests that P. falciparum has evolved its S-phase specifically to minimise conflicts between transcription and origin firing. This may be particularly important to maximise the efficiency and accuracy of schizogony, with its multiple rounds of DNA replication and its absence of canonical cell-cycle checkpoints.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum/metabolism , Parasites/genetics , Malaria, Falciparum/parasitology , DNA Replication/genetics , Cell Cycle/genetics , Replication Origin/genetics
2.
Brain Commun ; 2(2): fcaa154, 2020.
Article in English | MEDLINE | ID: mdl-33241210

ABSTRACT

Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.

3.
Mol Cancer Res ; 12(6): 855-66, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24803643

ABSTRACT

UNLABELLED: Carcinoma-associated fibroblasts (CAFs) are now widely appreciated for their contributions to tumor progression. However, the ability of CAFs to regulate anoikis, detachment-induced cell death, has yet to be investigated. Here, a new role for CAFs in blocking anoikis in multiple cell lines, facilitating luminal filling in three-dimensional cell culture, and promoting anchorage-independent growth is defined. In addition, a novel mechanism underlying anoikis inhibition is discovered. Importantly, it was demonstrated that CAFs secrete elevated quantities of insulin-like growth factor-binding proteins (IGFBPs) that are both necessary for CAF-mediated anoikis inhibition and sufficient to block anoikis in the absence of CAFs. Furthermore, these data reveal a unique antiapoptotic mechanism for IGFBPs: the stabilization of the antiapoptotic protein Mcl-1. In aggregate, these data delineate a novel role for CAFs in promoting cell survival during detachment and unveil an additional mechanism by which the tumor microenvironment contributes to cancer progression. These results also identify IGFBPs as potential targets for the development of novel chemotherapeutics designed to eliminate detached cancer cells. IMPLICATIONS: The ability of CAF-secreted IGFBPs to block anoikis in breast cancer represents a novel target for the development of therapeutics aimed at specifically eliminating extracellular matrix-detached breast cancer cells.


Subject(s)
Anoikis/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Fibroblasts/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Animals , Cell Line, Tumor , Cell Survival/physiology , Female , Heterografts , Humans , Insulin-Like Growth Factor Binding Proteins/genetics , Mice , Mice, Nude
4.
J Vis Exp ; (94)2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25590998

ABSTRACT

Stroke is the third leading cause of death among Americans 65 years of age or older(1). The quality of life for patients who suffer from a stroke fails to return to normal in a large majority of patients(2), which is mainly due to current lack of clinical treatment for acute stroke. This necessitates understanding the physiological effects of cerebral ischemia on brain tissue over time and is a major area of active research. Towards this end, experimental progress has been made using rats as a preclinical model for stroke, particularly, using non-invasive methods such as (18)F-fluorodeoxyglucose (FDG) coupled with Positron Emission Tomography (PET) imaging(3,10,17). Here we present a strategy for inducing cerebral ischemia in rats by middle cerebral artery occlusion (MCAO) that mimics focal cerebral ischemia in humans, and imaging its effects over 24 hr using FDG-PET coupled with X-ray computed tomography (CT) with an Albira PET-CT instrument. A VOI template atlas was subsequently fused to the cerebral rat data to enable a unbiased analysis of the brain and its sub-regions(4). In addition, a method for 3D visualization of the FDG-PET-CT time course is presented. In summary, we present a detailed protocol for initiating, quantifying, and visualizing an induced ischemic stroke event in a living Sprague-Dawley rat in three dimensions using FDG-PET.


Subject(s)
Brain Ischemia/diagnostic imaging , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Radiopharmaceuticals , Animals , Fluorodeoxyglucose F18/administration & dosage , Male , Radiopharmaceuticals/administration & dosage , Rats , Rats, Sprague-Dawley
5.
Cancer Res ; 73(12): 3704-15, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23771908

ABSTRACT

Metastasis by cancer cells relies upon the acquisition of the ability to evade anoikis, a cell death process elicited by detachment from extracellular matrix (ECM). The molecular mechanisms that ECM-detached cancer cells use to survive are not understood. Striking increases in reactive oxygen species (ROS) occur in ECM-detached mammary epithelial cells, threatening cell viability by inhibiting ATP production, suggesting that ROS must be neutralized if cells are to survive ECM-detachment. Here, we report the discovery of a prominent role for antioxidant enzymes, including catalase and superoxide dismutase, in facilitating the survival of breast cancer cells after ECM-detachment. Enhanced expression of antioxidant enzymes in nonmalignant mammary epithelial cells detached from ECM resulted in ATP elevation and survival in the luminal space of mammary acini. Conversely, silencing antioxidant enzyme expression in multiple breast cancer cell lines caused ATP reduction and compromised anchorage-independent growth. Notably, antioxidant enzyme-deficient cancer cells were compromised in their ability to form tumors in mice. In aggregate, our results reveal a vital role for antioxidant enzyme activity in maintaining metabolic activity and anchorage-independent growth in breast cancer cells. Furthermore, these findings imply that eliminating antioxidant enzyme activity may be an effective strategy to enhance susceptibility to cell death in cancer cells that may otherwise survive ECM-detachment.


Subject(s)
Antioxidants/pharmacology , Breast Neoplasms/prevention & control , Catalase/metabolism , Extracellular Matrix/metabolism , Adenosine Triphosphate/metabolism , Animals , Ascorbic Acid/pharmacology , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Catalase/genetics , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Adhesion/genetics , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Chromans/pharmacology , Female , Humans , Mice , Mice, Nude , RNA Interference , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
6.
J Vis Exp ; (73): e50250, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23542702

ABSTRACT

Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.


Subject(s)
Imaging, Three-Dimensional/methods , Models, Anatomic , Printing/methods , Tomography, X-Ray Computed/methods , Animals , Bone and Bones/anatomy & histology , Imaging, Three-Dimensional/instrumentation , Male , Printing/instrumentation , Rabbits , Rats, Wistar , Skeleton , Skull/anatomy & histology , Software , Tomography, X-Ray Computed/instrumentation
7.
Am J Nucl Med Mol Imaging ; 2(4): 405-14, 2012.
Article in English | MEDLINE | ID: mdl-23145357

ABSTRACT

Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with (99m)Tc and (18)F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies.

8.
J Vis Exp ; (62): e3680, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22508524

ABSTRACT

Obesity is associated with increased morbidity and mortality as well as reduced metrics in quality of life. Both environmental and genetic factors are associated with obesity, though the precise underlying mechanisms that contribute to the disease are currently being delineated. Several small animal models of obesity have been developed and are employed in a variety of studies. A critical component to these experiments involves the collection of regional and/or total animal fat content data under varied conditions. Traditional experimental methods available for measuring fat content in small animal models of obesity include invasive (e.g. ex vivo measurement of fat deposits) and non-invasive (e.g. Dual Energy X-ray Absorptiometry (DEXA), or Magnetic Resonance (MR)) protocols, each of which presents relative trade-offs. Current invasive methods for measuring fat content may provide details for organ and region specific fat distribution, but sacrificing the subjects will preclude longitudinal assessments. Conversely, current non-invasive strategies provide limited details for organ and region specific fat distribution, but enable valuable longitudinal assessment. With the advent of dedicated small animal X-ray computed tomography (CT) systems and customized analytical procedures, both organ and region specific analysis of fat distribution and longitudinal profiling may be possible. Recent reports have validated the use of CT for in vivo longitudinal imaging of adiposity in living mice. Here we provide a modified method that allows for fat/total volume measurement, analysis and visualization utilizing the Carestream Molecular Imaging Albira CT system in conjunction with PMOD and Volview software packages.


Subject(s)
Adipose Tissue/pathology , Disease Models, Animal , Obesity/pathology , Tomography, X-Ray Computed/methods , Animals , Mice , Mice, Inbred C57BL
9.
Chem Commun (Camb) ; 47(28): 7977-9, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21681307

ABSTRACT

Synthetic ion channel hydraphiles, which are known to infiltrate membranes and disrupt ion homeostasis, were tested as direct injection toxins in live mice as potential schlerotic agents. The study uses a near-IR dye to image and evaluate the success of the approach.


Subject(s)
Biomimetic Materials/pharmacology , Cell Death/drug effects , Ion Channels/metabolism , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/chemistry , HEK293 Cells , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Injections , Ion Transport/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...