Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Brain Commun ; 6(3): fcae133, 2024.
Article in English | MEDLINE | ID: mdl-38715716

ABSTRACT

White matter hyperintensities (WMH), a common feature of cerebral small vessel disease, are related to worse clinical outcomes after stroke. We assessed the impact of white matter hyperintensity changes over 1 year after minor stroke on change in mobility and dexterity, including differences between the dominant and non-dominant hands and objective in-person assessment versus patient-reported experience. We recruited participants with lacunar or minor cortical ischaemic stroke, performed medical and cognitive assessments and brain MRI at presentation and at 1 year. At both time points, we used the timed-up and go test and the 9-hole peg test to assess mobility and dexterity. At 1 year, participants completed the Stroke Impact Scale. We ran two linear mixed models to assess change in timed-up and go and 9-hole peg test, adjusted for age, sex, stroke severity (National Institutes of Health Stroke Scale), dependency (modified Rankin Score), vascular risk factor score, white matter hyperintensity volume (as % intracranial volume) and additionally for 9-hole peg test: Montreal cognitive assessment, hand (dominant/non-dominant), National Adult Reading Test (premorbid IQ), index lesion side. We performed ordinal logistic regression, corrected for age and sex, to assess relations between timed-up and go and Stroke Impact Scale mobility, and 9-hole peg test and Stroke Impact Scale hand function. We included 229 participants, mean age 65.9 (standard deviation = 11.13); 66% male. 215/229 attended 1-year follow-up. Over 1 year, timed-up and go time increased with aging (standardized ß [standardized 95% Confidence Interval]: 0.124[0.011, 0.238]), increasing National Institutes of Health Stroke Scale (0.106[0.032, 0.180]), increasing modified Rankin Score (0.152[0.073, 0.231]) and increasing white matter hyperintensity volume (0.176[0.061, 0.291]). Men were faster than women (-0.306[0.011, 0.238]). Over 1 year, slower 9-hole peg test was related to use of non-dominant hand (0.290[0.155, 0.424]), aging (0.102[0.012, 0.192]), male sex (0.182[0.008, 0.356]), increasing National Institutes of Health Stroke Scale (0.160 [0.094, 0.226]), increasing modified Rankin Score (0.100[0.032, 0.169]), decreasing Montreal cognitive assessment score (-0.090[-0.167, -0.014]) and increasing white matter hyperintensity volume (0.104[0.015, 0.193]). One year post-stroke, Stroke Impact Scale mobility worsened per second increase on timed-up and go, odds ratio 0.67 [95% confidence interval 0.60, 0.75]. Stroke Impact Scale hand function worsened per second increase on the 9-hole peg test for the dominant hand (odds ratio 0.79 [0.71, 0.86]) and for the non-dominant hand (odds ratio 0.88 [0.83, 0.93]). Decline in mobility and dexterity is associated with white matter hyperintensity volume increase, independently of stroke severity. Mobility and dexterity declined more gradually for stable and regressing white matter hyperintensity volume. Dominant and non-dominant hands might be affected differently. In-person measures of dexterity and mobility are associated with self-reported experience 1-year post-stroke.

2.
Neurology ; 102(7): e209173, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38471056

ABSTRACT

BACKGROUND AND OBJECTIVES: The association between statin use and the risk of intracranial hemorrhage (ICrH) following ischemic stroke (IS) or transient ischemic attack (TIA) in patients with cerebral microbleeds (CMBs) remains uncertain. This study investigated the risk of recurrent IS and ICrH in patients receiving statins based on the presence of CMBs. METHODS: We conducted a pooled analysis of individual patient data from the Microbleeds International Collaborative Network, comprising 32 hospital-based prospective studies fulfilling the following criteria: adult patients with IS or TIA, availability of appropriate baseline MRI for CMB quantification and distribution, registration of statin use after the index stroke, and collection of stroke event data during a follow-up period of ≥3 months. The primary endpoint was the occurrence of recurrent symptomatic stroke (IS or ICrH), while secondary endpoints included IS alone or ICrH alone. We calculated incidence rates and performed Cox regression analyses adjusting for age, sex, hypertension, atrial fibrillation, previous stroke, and use of antiplatelet or anticoagulant drugs to explore the association between statin use and stroke events during follow-up in patients with CMBs. RESULTS: In total, 16,373 patients were included (mean age 70.5 ± 12.8 years; 42.5% female). Among them, 10,812 received statins at discharge, and 4,668 had 1 or more CMBs. The median follow-up duration was 1.34 years (interquartile range: 0.32-2.44). In patients with CMBs, statin users were compared with nonusers. Compared with nonusers, statin therapy was associated with a reduced risk of any stroke (incidence rate [IR] 53 vs 79 per 1,000 patient-years, adjusted hazard ratio [aHR] 0.68 [95% CI 0.56-0.84]), a reduced risk of IS (IR 39 vs 65 per 1,000 patient-years, aHR 0.65 [95% CI 0.51-0.82]), and no association with the risk of ICrH (IR 11 vs 16 per 1,000 patient-years, aHR 0.73 [95% CI 0.46-1.15]). The results in aHR remained consistent when considering anatomical distribution and high burden (≥5) of CMBs. DISCUSSION: These observational data suggest that secondary stroke prevention with statins in patients with IS or TIA and CMBs is associated with a lower risk of any stroke or IS without an increased risk of ICrH. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that for patients with IS or TIA and CMBs, statins lower the risk of any stroke or IS without increasing the risk of ICrH.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Cerebral Hemorrhage/epidemiology , Cerebral Infarction/complications , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Intracranial Hemorrhages/complications , Ischemic Attack, Transient/epidemiology , Ischemic Stroke/complications , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/complications , Prospective Studies , Risk Factors , Secondary Prevention , Stroke/epidemiology
3.
Neurology ; 102(1): e207795, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38165371

ABSTRACT

BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; p = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH.


Subject(s)
Cerebral Small Vessel Diseases , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Humans , Female , Aged , Male , Prognosis , Ischemic Attack, Transient/complications , Ischemic Attack, Transient/diagnostic imaging , Prospective Studies , Intracranial Hemorrhages , Stroke/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Magnetic Resonance Imaging , Cerebral Hemorrhage
4.
J Am Heart Assoc ; 13(3): e032259, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293936

ABSTRACT

BACKGROUND: White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. METHODS AND RESULTS: We defined areas of stable normal-appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1-year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross-sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross-sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006-0.017]; -0.002 [95% CI, -0.008 to 0.003] and -0.003 [95% CI, -0.009 to 0.004]); in progressing and stable WMHs, FA decreased (-0.022 [95% CI, -0.027 to -0.017] and -0.009 [95% CI, -0.011 to -0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050-0.063], 0.058 [95% CI, 0.050 -0.066]; stable WMHs, 0.054 [95% CI, 0.045-0.063], 0.049 [95% CI, 0.039-0.058]); and in stable normal-appearing white matter, MD increased (0.004 [95% CI, 0.003-0.005]), whereas FA and T1 slightly decreased and increased (-0.002 [95% CI, -0.004 to -0.000] and 0.005 [95% CI, 0.001-0.009]). CONCLUSIONS: Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Male , Humans , Aged , Female , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/diagnostic imaging
5.
J Stroke Cerebrovasc Dis ; 33(1): 107512, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007987

ABSTRACT

BACKGROUND: The extent and distribution of intracranial hemorrhage (ICH) directly affects clinical management. Artificial intelligence (AI) software can detect and may delineate ICH extent on brain CT. We evaluated e-ASPECTS software (Brainomix Ltd.) performance for ICH delineation. METHODS: We qualitatively assessed software delineation of ICH on CT using patients from six stroke trials. We assessed hemorrhage delineation in five compartments: lobar, deep, posterior fossa, intraventricular, extra-axial. We categorized delineation as excellent, good, moderate, or poor. We assessed quality of software delineation with number of affected compartments in univariate analysis (Kruskall-Wallis test) and ICH location using logistic regression (dependent variable: dichotomous delineation categories 'excellent-good' versus 'moderate-poor'), and report odds ratios (OR) and 95 % confidence intervals (95 %CI). RESULTS: From 651 patients with ICH (median age 75 years, 53 % male), we included 628 with assessable CTs. Software delineation of ICH extent was 'excellent' in 189/628 (30 %), 'good' in 255/628 (41 %), 'moderate' in 127/628 (20 %), and 'poor' in 57/628 cases (9 %). The quality of software delineation of ICH was better when fewer compartments were affected (Z = 3.61-6.27; p = 0.0063). Software delineation of ICH extent was more likely to be 'excellent-good' quality when lobar alone (OR = 1.56, 95 %CI = 0.97-2.53) but 'moderate-poor' with any intraventricular (OR = 0.56, 95 %CI = 0.39-0.81, p = 0.002) or any extra-axial (OR = 0.41, 95 %CI = 0.27-0.62, p<0.001) extension. CONCLUSIONS: Delineation of ICH extent on stroke CT scans by AI software was excellent or good in 71 % of cases but was more likely to over- or under-estimate extent when ICH was either more extensive, intraventricular, or extra-axial.


Subject(s)
Cerebral Hemorrhage , Stroke , Humans , Male , Aged , Female , Cerebral Hemorrhage/diagnostic imaging , Artificial Intelligence , Stroke/diagnostic imaging , Intracranial Hemorrhages/diagnostic imaging , Tomography, X-Ray Computed , Software , Neuroimaging
6.
Eye (Lond) ; 38(6): 1208-1214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081936

ABSTRACT

OBJECTIVES: To investigate the association between intraocular pressure (IOP) and axial elongation rate in highly myopic children from the ZOC-BHVI High Myopia Cohort Study. METHODS: 162 eyes of 81 healthy children (baseline spherical equivalent: -6.25 D to -15.50 D) aged 7-12 years with non-pathological high myopia were studied over five biennial visits. The mean (SD) follow-up duration was 5.2 (3.3) years. A linear mixed-effects model (LMM) was used to assess the association between IOP (at time point t-1) and axial elongation rate (annual rate of change in AL from t-1 to t), controlling for a pre-defined set of covariates including sex, age, central corneal thickness, anterior chamber depth and lens thickness (at t-1). LMM was also used to assess the contemporaneous association between IOP and axial length (AL) at t, controlling for the same set of covariates (at t) as before. RESULTS: Higher IOP was associated with slower axial growth (ß = -0.01, 95% CI -0.02 to -0.005, p = 0.001). There was a positive contemporaneous association between IOP and AL (ß = 0.03, 95% CI 0.01-0.05, p = 0.004), but this association became progressively less positive with increasing age, as indicated by a negative interaction effect between IOP and age on AL (ß = -0.01, 95% CI -0.01 to -0.003, p = 0.001). CONCLUSIONS: Higher IOP is associated with slower rather than faster axial growth in children with non-pathological high myopia, an association plausibly confounded by the increased influence of ocular compliance on IOP.


Subject(s)
Glaucoma , Myopia , Child , Humans , Intraocular Pressure , Cohort Studies , Eye/pathology , Glaucoma/pathology , Refraction, Ocular , Axial Length, Eye/pathology
7.
J Neurosci Methods ; 403: 110039, 2024 03.
Article in English | MEDLINE | ID: mdl-38128784

ABSTRACT

BACKGROUND: Magnetic Resonance Imaging (MRI) visible perivascular spaces (PVS) have been associated with age, decline in cognitive abilities, interrupted sleep, and markers of small vessel disease. But the limits of validity of their quantification have not been established. NEW METHOD: We use a purpose-built digital reference object to construct an in-silico phantom for addressing this need, and validate it using a physical phantom. We use cylinders of different sizes as models for PVS. We also evaluate the influence of 'PVS' orientation, and different sets of parameters of the two vesselness filters that have been used for enhancing tubular structures, namely Frangi and RORPO filters, in the measurements' accuracy. RESULTS: PVS measurements in MRI are only a proxy of their true dimensions, as the boundaries of their representation are consistently overestimated. The success in the use of the Frangi filter relies on a careful tuning of several parameters. Alpha= 0.5, beta= 0.5 and c= 500 yielded the best results. RORPO does not have these requirements and allows detecting smaller cylinders in their entirety more consistently in the absence of noise and confounding artefacts. The Frangi filter seems to be best suited for voxel sizes equal or larger than 0.4 mm-isotropic and cylinders larger than 1 mm diameter and 2 mm length. 'PVS' orientation did not affect measurements in data with isotropic voxels. COMPARISON WITH EXISTENT METHODS: Does not apply. CONCLUSIONS: The in-silico and physical phantoms presented are useful for establishing the validity of quantification methods of tubular small structures.


Subject(s)
Cognition , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods
8.
J Neurosci Methods ; 403: 110037, 2024 03.
Article in English | MEDLINE | ID: mdl-38154663

ABSTRACT

BACKGROUND: Growing interest surrounds perivascular spaces (PVS) as a clinical biomarker of brain dysfunction given their association with cerebrovascular risk factors and disease. Neuroimaging techniques allowing quick and reliable quantification are being developed, but, in practice, they require optimisation as their limits of validity are usually unspecified. NEW METHOD: We evaluate modifications and alternatives to a state-of-the-art (SOTA) PVS segmentation method that uses a vesselness filter to enhance PVS discrimination, followed by thresholding of its response, applied to brain magnetic resonance images (MRI) from patients with sporadic small vessel disease acquired at 3 T. RESULTS: The method is robust against inter-observer differences in threshold selection, but separate thresholds for each region of interest (i.e., basal ganglia, centrum semiovale, and midbrain) are required. Noise needs to be assessed prior to selecting these thresholds, as effect of noise and imaging artefacts can be mitigated with a careful optimisation of these thresholds. PVS segmentation from T1-weighted images alone, misses small PVS, therefore, underestimates PVS count, may overestimate individual PVS volume especially in the basal ganglia, and is susceptible to the inclusion of calcified vessels and mineral deposits. Visual analyses indicated the incomplete and fragmented detection of long and thin PVS as the primary cause of errors, with the Frangi filter coping better than the Jerman filter. COMPARISON WITH EXISTING METHODS: Limits of validity to a SOTA PVS segmentation method applied to 3 T MRI with confounding pathology are given. CONCLUSIONS: Evidence presented reinforces the STRIVE-2 recommendation of using T2-weighted images for PVS assessment wherever possible. The Frangi filter is recommended for PVS segmentation from MRI, offering robust output against variations in threshold selection and pathology presentation.


Subject(s)
Cerebral Small Vessel Diseases , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , Basal Ganglia/diagnostic imaging
9.
Stroke ; 54(11): 2776-2784, 2023 11.
Article in English | MEDLINE | ID: mdl-37814956

ABSTRACT

BACKGROUND: Cerebrovascular reactivity (CVR) is inversely related to white matter hyperintensity severity, a marker of cerebral small vessel disease (SVD). Less is known about the relationship between CVR and other SVD imaging features or cognition. We aimed to investigate these cross-sectional relationships. METHODS: Between 2018 and 2021 in Edinburgh, we recruited patients presenting with lacunar or cortical ischemic stroke, whom we characterized for SVD features. We measured CVR in subcortical gray matter, normal-appearing white matter, and white matter hyperintensity using 3T magnetic resonance imaging. We assessed cognition using Montreal Cognitive Assessment. Statistical analyses included linear regression models with CVR as outcome, adjusted for age, sex, and vascular risk factors. We reported regression coefficients with 95% CIs. RESULTS: Of 208 patients, 182 had processable CVR data sets (median age, 68.2 years; 68% men). Although the strength of association depended on tissue type, lower CVR in normal-appearing tissues and white matter hyperintensity was associated with larger white matter hyperintensity volume (BNAWM=-0.0073 [95% CI, -0.0133 to -0.0014] %/mm Hg per 10-fold increase in percentage intracranial volume), more lacunes (BNAWM=-0.00129 [95% CI, -0.00215 to -0.00043] %/mm Hg per lacune), more microbleeds (BNAWM=-0.00083 [95% CI, -0.00130 to -0.00036] %/mm Hg per microbleed), higher deep atrophy score (BNAWM=-0.00218 [95% CI, -0.00417 to -0.00020] %/mm Hg per score point increase), higher perivascular space score (BNAWM=-0.0034 [95% CI, -0.0066 to -0.0002] %/mm Hg per score point increase in basal ganglia), and higher SVD score (BNAWM=-0.0048 [95% CI, -0.0075 to -0.0021] %/mm Hg per score point increase). Lower CVR in normal-appearing tissues was related to lower Montreal Cognitive Assessment without reaching convention statistical significance (BNAWM=0.00065 [95% CI, -0.00007 to 0.00137] %/mm Hg per score point increase). CONCLUSIONS: Lower CVR in patients with SVD was related to more severe SVD burden and worse cognition in this cross-sectional analysis. Longitudinal analysis will help determine whether lower CVR predicts worsening SVD severity or vice versa. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: ISRCTN12113543.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Male , Humans , Aged , Female , Cross-Sectional Studies , Cerebral Small Vessel Diseases/complications , Magnetic Resonance Imaging/methods , Cognition , White Matter/pathology
10.
Cereb Circ Cogn Behav ; 5: 100179, 2023.
Article in English | MEDLINE | ID: mdl-37593075

ABSTRACT

Background: Cerebral small vessel disease (SVD) contributes to 45% of dementia cases worldwide, yet we lack a reliable model for predicting dementia in SVD. Past attempts largely relied on traditional statistical approaches. Here, we investigated whether machine learning (ML) methods improved prediction of incident dementia in SVD from baseline SVD-related features over traditional statistical methods. Methods: We included three cohorts with varying SVD severity (RUN DMC, n = 503; SCANS, n = 121; HARMONISATION, n = 265). Baseline demographics, vascular risk factors, cognitive scores, and magnetic resonance imaging (MRI) features of SVD were used for prediction. We conducted both survival analysis and classification analysis predicting 3-year dementia risk. For each analysis, several ML methods were evaluated against standard Cox or logistic regression. Finally, we compared the feature importance ranked by different models. Results: We included 789 participants without missing data in the survival analysis, amongst whom 108 (13.7%) developed dementia during a median follow-up of 5.4 years. Excluding those censored before three years, we included 750 participants in the classification analysis, amongst whom 48 (6.4%) developed dementia by year 3. Comparing statistical and ML models, only regularised Cox/logistic regression outperformed their statistical counterparts overall, but not significantly so in survival analysis. Baseline cognition was highly predictive, and global cognition was the most important feature. Conclusions: When using baseline SVD-related features to predict dementia in SVD, the ML survival or classification models we evaluated brought little improvement over traditional statistical approaches. The benefits of ML should be evaluated with caution, especially given limited sample size and features.

11.
Stroke ; 54(9): 2296-2303, 2023 09.
Article in English | MEDLINE | ID: mdl-37551589

ABSTRACT

BACKGROUND: Poststroke cognitive impairment (PSCI) occurs in about half of stroke survivors. Cumulative evidence indicates that functional outcomes of stroke are worse in women than men. Yet it is unknown whether the occurrence and characteristics of PSCI differ between men and women. METHODS: Individual patient data from 9 cohorts of patients with ischemic stroke were harmonized and pooled through the Meta-VCI-Map consortium (n=2343, 38% women). We included patients with visible symptomatic infarcts on computed tomography/magnetic resonance imaging and cognitive assessment within 15 months after stroke. PSCI was defined as impairment in ≥1 cognitive domains on neuropsychological assessment. Logistic regression analyses were performed to compare men to women, adjusted for study cohort, to obtain odds ratios for PSCI and individual cognitive domains. We also explored sensitivity and specificity of cognitive screening tools for detecting PSCI, according to sex (Mini-Mental State Examination, 4 cohorts, n=1814; Montreal Cognitive Assessment, 3 cohorts, n=278). RESULTS: PSCI was found in 51% of both women and men. Men had a lower risk of impairment of attention and executive functioning (men: odds ratio, 0.76 [95% CI, 0.61-0.96]), and language (men: odds ratio, 0.67 [95% CI, 0.45-0.85]), but a higher risk of verbal memory impairment (men: odds ratio, 1.43 [95% CI, 1.17-1.75]). The sensitivity of Mini-Mental State Examination (<25) for PSCI was higher for women (0.53) than for men (0.27; P=0.02), with a lower specificity for women (0.80) than men (0.96; P=0.01). Sensitivity and specificity of Montreal Cognitive Assessment (<26.) for PSCI was comparable between women and men (0.91 versus 0.86; P=0.62 and 0.29 versus 0.28; P=0.86, respectively). CONCLUSIONS: Sex was not associated with PSCI occurrence but affected domains differed between men and women. The latter may explain why sensitivity of the Mini-Mental State Examination for detecting PSCI was higher in women with a lower specificity compared with men. These sex differences need to be considered when screening for and diagnosing PSCI in clinical practice.


Subject(s)
Cognitive Dysfunction , Ischemic Stroke , Stroke , Humans , Female , Male , Ischemic Stroke/complications , Sex Characteristics , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Stroke/epidemiology , Executive Function
12.
J Neurol Sci ; 451: 120735, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37499621

ABSTRACT

BACKGROUND: The paranasal sinus mucosal thickening, visible in magnetic resonance imaging (MRI), maybe a source of inflammation in microvessels, but its relationship with small vessel disease (SVD) is unclear. We reviewed the literature and analysed a sample of patients with sporadic SVD to identify any association between paranasal sinus opacification severity and SVD neuroimaging markers. METHODS: We systematically reviewed MEDLINE and EMBASE databases up to April 2020 for studies on paranasal sinus mucosal changes in patients with SVD, cerebrovascular disease (CVD), and age-related neurodegenerative diseases. We analysed clinical and MRI data from 100 participants in a prospective study, the Mild Stroke Study 3 (ISRCTN 12113543) at 1-3, 6 and 12 months following a minor stroke to test key outcomes from the literature review. We used multivariate linear regression to explore associations between modified Lund-Mackay (LM) scores and brain, white matter hyperintensities (WMH), enlarged perivascular spaces (PVS) volumes at each time point, adjusted for baseline age, sex, diabetes, hypercholesterolaemia, hypertension and smoking. RESULTS: The literature review, after screening 3652 publications, yielded 11 primary studies, for qualitative synthesis with contradictory results, as positive associations/higher risk from 5/7 CVD studies were contradicted by the two studies with largest samples, and data from dementia studies was equally split in their outcome. From the pilot sample of patients analysed (female N = 33, mean age 67.42 (9.70) years), total LM scores had a borderline negative association with PVS in the centrum semiovale at baseline and 6 months (B = -0.25, SE = 0.14, p = 0.06) but were not associated with average brain tissue, WMH or normal-appearing white matter volumes. CONCLUSION: The inconclusive results from the literature review and empirical study justify larger studies between PVS volume and paranasal sinuses opacification in patients with sporadic SVD.


Subject(s)
Cerebral Small Vessel Diseases , Cerebrovascular Disorders , Paranasal Sinuses , Stroke , Humans , Female , Aged , Male , Prospective Studies , Cerebral Small Vessel Diseases/pathology , Brain/pathology , Stroke/complications , Cerebrovascular Disorders/complications , Magnetic Resonance Imaging , Paranasal Sinuses/pathology
13.
J Cereb Blood Flow Metab ; 43(9): 1490-1502, 2023 09.
Article in English | MEDLINE | ID: mdl-37132279

ABSTRACT

Blood-brain barrier (BBB) is known to be impaired in cerebral small vessel disease (SVD), and is measurable by dynamic-contrast enhancement (DCE)-MRI. In a cohort of 69 patients (42 sporadic, 27 monogenic SVD), who underwent 3T MRI, including DCE and cerebrovascular reactivity (CVR) sequences, we assessed the relationship of BBB-leakage hotspots to SVD lesions (lacunes, white matter hyperintensities (WMH), and microbleeds). We defined as hotspots the regions with permeability surface area product highest decile on DCE-derived maps within the white matter. We assessed factors associated with the presence and number of hotspots corresponding to SVD lesions in multivariable regression models adjusted for age, WMH volume, number of lacunes, and SVD type. We identified hotspots at lacune edges in 29/46 (63%) patients with lacunes, within WMH in 26/60 (43%) and at the WMH edges in 34/60 (57%) patients with WMH, and microbleed edges in 4/11 (36%) patients with microbleeds. In adjusted analysis, lower WMH-CVR was associated with presence and number of hotspots at lacune edges, and higher WMH volume with hotspots within WMH and at WMH edges, independently of the SVD type. In conclusion, SVD lesions frequently collocate with high BBB-leakage in patients with sporadic and monogenic forms of SVD.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Humans , Blood-Brain Barrier/pathology , Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/complications , White Matter/pathology , Cerebral Hemorrhage/pathology
14.
J Cereb Blood Flow Metab ; 43(10): 1779-1795, 2023 10.
Article in English | MEDLINE | ID: mdl-37254892

ABSTRACT

Brain fluid dynamics remains poorly understood with central issues unresolved. In this study, we first review the literature regarding points of controversy, then pilot study if conventional MRI techniques can assess brain fluid outflow pathways and explore potential associations with small vessel disease (SVD). We assessed 19 subjects participating in the Mild Stroke Study 3 who had FLAIR imaging before and 20-30 minutes after intravenous Gadolinium (Gd)-based contrast. Signal intensity (SI) change was assessed semi-quantitatively by placing regions of interest, and qualitatively by a visual scoring system, along dorsal and basal fluid outflow routes. Following i.v. Gd, SI increased substantially along the anterior, middle, and posterior superior sagittal sinus (SSS) (82%, 104%, and 119%, respectively), at basal areas (cribriform plate, 67%; jugular foramina, 72%), and in narrow channels surrounding superficial cortical veins separated from surrounding cerebrospinal fluid (CSF) (96%) (all p < 0.001). The SI increase was associated with higher intraparenchymal perivascular spaces (PVS) scores (Std. Beta 0.71, p = 0.01). Our findings suggests that interstitial fluid drainage is visible on conventional MRI and drains from brain parenchyma via cortical perivenous spaces to dural meningeal lymphatics along the SSS remaining separate from the CSF. An association with parenchymal PVS requires further research, now feasible in humans.


Subject(s)
Brain , Stroke , Humans , Pilot Projects , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
15.
Ann Clin Transl Neurol ; 10(7): 1072-1082, 2023 07.
Article in English | MEDLINE | ID: mdl-37208850

ABSTRACT

OBJECTIVE: Software developed using artificial intelligence may automatically identify arterial occlusion and provide collateral vessel scoring on CT angiography (CTA) performed acutely for ischemic stroke. We aimed to assess the diagnostic accuracy of e-CTA by Brainomix™ Ltd by large-scale independent testing using expert reading as the reference standard. METHODS: We identified a large clinically representative sample of baseline CTA from 6 studies that recruited patients with acute stroke symptoms involving any arterial territory. We compared e-CTA results with masked expert interpretation of the same scans for the presence and location of laterality-matched arterial occlusion and/or abnormal collateral score combined into a single measure of arterial abnormality. We tested the diagnostic accuracy of e-CTA for identifying any arterial abnormality (and in a sensitivity analysis compliant with the manufacturer's guidance that software only be used to assess the anterior circulation). RESULTS: We include CTA from 668 patients (50% female; median: age 71 years, NIHSS 9, 2.3 h from stroke onset). Experts identified arterial occlusion in 365 patients (55%); most (343, 94%) involved the anterior circulation. Software successfully processed 545/668 (82%) CTAs. The sensitivity, specificity and diagnostic accuracy of e-CTA for detecting arterial abnormality were each 72% (95% CI = 66-77%). Diagnostic accuracy was non-significantly improved in a sensitivity analysis excluding occlusions from outside the anterior circulation (76%, 95% CI = 72-80%). INTERPRETATION: Compared to experts, the diagnostic accuracy of e-CTA for identifying acute arterial abnormality was 72-76%. Users of e-CTA should be competent in CTA interpretation to ensure all potential thrombectomy candidates are identified.


Subject(s)
Arterial Occlusive Diseases , Stroke , Humans , Female , Aged , Male , Computed Tomography Angiography/methods , Artificial Intelligence , Cerebral Angiography/methods , Stroke/diagnostic imaging , Software
17.
Int J Geriatr Psychiatry ; 38(1): e5855, 2023 01.
Article in English | MEDLINE | ID: mdl-36490272

ABSTRACT

BACKGROUND: Neuropsychiatric symptoms could form part of an early cerebral small vessel disease prodrome that is detectable before stroke or dementia onset. We aimed to identify whether apathy, depression, anxiety, and subjective memory complaints associate with longitudinal white matter hyperintensity (WMH) progression. METHODS: Community-dwelling older adults from the observational Lothian Birth Cohort 1936 attended three visits at mean ages 73, 76, and 79 years, repeating MRI, Mini-Mental State Examination, neuropsychiatric (Dimensional Apathy Scale, Hospital Anxiety and Depression Scale), and subjective memory symptoms. We ran regression and mixed-effects models for symptoms and normalised WMH volumes (cube root of WMH:ICV × 10). RESULTS: At age 73, 76, and 79, m = 672, n = 476, and n = 382 participants attended MRI respectively. Worse apathy at age 79 was associated with WMH volume increase (ß = 0.27, p = 0.04) in the preceding 6 years. A 1SD increase in apathy score at age 79 associated with a 0.17 increase in WMH (ß = 0.17 normalised WMH percent ICV, p = 0.009). In apathy subscales, executive (ß = 0.13, p = 0.05) and emotional (ß = 0.13, p = 0.04) scores associated with increasing WMH more than initiation scores (ß = 0.11, p = 0.08). Increasing WMH also associated with age (ß = 0.40, p = 0.002) but not higher depression (ß = -0.01, p = 0.78), anxiety (ß = 0.05, p = 0.13) scores, or subjective memory complaints (ß = 1.12, p = 0.75). CONCLUSIONS: Apathy independently associates with preceding longitudinal WMH progression, while depression, anxiety, and subjective memory complaints do not. Patients with apathy should be considered for enrolment to small vessel disease trials.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Humans , Aged , White Matter/diagnostic imaging , Birth Cohort , Cerebral Small Vessel Diseases/diagnostic imaging , Magnetic Resonance Imaging , Disease Progression
18.
Cereb Circ Cogn Behav ; 3: 100041, 2022.
Article in English | MEDLINE | ID: mdl-36324402

ABSTRACT

Background: Neuropsychiatric symptoms associate cross-sectionally with cerebral small vessel disease but it is not clear whether these symptoms could act as early clinical markers of small vessel disease progression. We investigated whether longitudinal change in Neuropsychiatric Inventory (NPI) scores associated with white matter hyperintensity (WMH) progression in a memory clinic population. Material and methods: We included participants from the prospective Sunnybrook Dementia Study with Alzheimer's disease and vascular subtypes of mild cognitive impairment and dementia with two MRI and ≥ 1 NPI. We conducted linear mixed-effects analyses, adjusting for age, atrophy, vascular risk factors, cognition, function, and interscan interval. Results: At baseline (n=124), greater atrophy, age, vascular risk factors and total NPI score were associated with higher baseline WMH volume, while longitudinally, all but vascular risk factors were associated. Change in total NPI score was associated with change in WMH volume, χ2 = 7.18, p = 0.007, whereby a one-point change in NPI score from baseline to follow-up was associated with a 0.0017 change in normalized WMH volume [expressed as cube root of (WMH volume cm³ as % intracranial volume)], after adjusting for age, atrophy, vascular risk factors and interscan interval. Conclusions: In memory clinic patients, WMH progression over 1-2 years associated with worsening neuropsychiatric symptoms, while WMH volume remained unchanged in those with stable NPI scores in this population with low background WMH burden.

19.
Ann Neurol ; 92(6): 943-957, 2022 12.
Article in English | MEDLINE | ID: mdl-36053916

ABSTRACT

OBJECTIVE: The purpose of this study was to test e-ASPECTS software in patients with stroke. Marketed as a decision-support tool, e-ASPECTS may detect features of ischemia or hemorrhage on computed tomography (CT) imaging and quantify ischemic extent using Alberta Stroke Program Early CT Score (ASPECTS). METHODS: Using CT from 9 stroke studies, we compared software with masked experts. As per indications for software use, we assessed e-ASPECTS results for patients with/without middle cerebral artery (MCA) ischemia but no other cause of stroke. In an analysis outside the intended use of the software, we enriched our dataset with non-MCA ischemia, hemorrhage, and mimics to simulate a representative "front door" hospital population. With final diagnosis as the reference standard, we tested the diagnostic accuracy of e-ASPECTS for identifying stroke features (ischemia, hyperattenuated arteries, and hemorrhage) in the representative population. RESULTS: We included 4,100 patients (51% women, median age = 78 years, National Institutes of Health Stroke Scale [NIHSS] = 10, onset to scan = 2.5 hours). Final diagnosis was ischemia (78%), hemorrhage (14%), or mimic (8%). From 3,035 CTs with expert-rated ASPECTS, most (2084/3035, 69%) e-ASPECTS results were within one point of experts. In the representative population, the diagnostic accuracy of e-ASPECTS was 71% (95% confidence interval [CI] = 70-72%) for detecting ischemic features, 85% (83-86%) for hemorrhage. Software identified more false positive ischemia (12% vs 2%) and hemorrhage (14% vs <1%) than experts. INTERPRETATION: On independent testing, e-ASPECTS provided moderate agreement with experts and overcalled stroke features. Therefore, future prospective trials testing impacts of artificial intelligence (AI) software on patient care and outcome are required before widespread implementation of stroke decision-support software. ANN NEUROL 2022;92:943-957.


Subject(s)
Brain Ischemia , Stroke , Humans , Female , Aged , Male , Brain Ischemia/diagnostic imaging , Artificial Intelligence , Stroke/diagnostic imaging , Software , Tomography, X-Ray Computed/methods , Brain , Retrospective Studies
20.
Front Neurol ; 13: 889884, 2022.
Article in English | MEDLINE | ID: mdl-36090857

ABSTRACT

Enlarged perivascular spaces (PVS) and white matter hyperintensities (WMH) are features of cerebral small vessel disease which can be seen in brain magnetic resonance imaging (MRI). Given the associations and proposed mechanistic link between PVS and WMH, they are hypothesized to also have topological proximity. However, this and the influence of their spatial proximity on WMH progression are unknown. We analyzed longitudinal MRI data from 29 out of 32 participants (mean age at baseline = 71.9 years) in a longitudinal study of cognitive aging, from three waves of data collection at 3-year intervals, alongside semi-automatic segmentation masks for PVS and WMH, to assess relationships. The majority of deep WMH clusters were found adjacent to or enclosing PVS (waves-1: 77%; 2: 76%; 3: 69%), especially in frontal, parietal, and temporal regions. Of the WMH clusters in the deep white matter that increased between waves, most increased around PVS (waves-1-2: 73%; 2-3: 72%). Formal statistical comparisons of severity of each of these two SVD markers yielded no associations between deep WMH progression and PVS proximity. These findings may suggest some deep WMH clusters may form and grow around PVS, possibly reflecting the consequences of impaired interstitial fluid drainage via PVS. The utility of these relationships as predictors of WMH progression remains unclear.

SELECTION OF CITATIONS
SEARCH DETAIL
...