Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 66(8)2021 04 16.
Article in English | MEDLINE | ID: mdl-33761491

ABSTRACT

A synthetic computed tomography (sCT) is required for daily plan optimization on an MRI-linac. Yet, only limited information is available on the accuracy of dose calculations on sCT for breast radiotherapy. This work aimed to (1) evaluate dosimetric accuracy of treatment plans for single-fraction neoadjuvant partial breast irradiation (PBI) on a 1.5 T MRI-linac calculated on a) bulk-density sCT mimicking the current MRI-linac workflow and b) deep learning-generated sCT, and (2) investigate the number of bulk-density levels required. For ten breast cancer patients we created three bulk-density sCTs of increasing complexity from the planning-CT, using bulk-density for: (1) body, lungs, and GTV (sCTBD1); (2) volumes for sCTBD1plus chest wall and ipsilateral breast (sCTBD2); (3) volumes for sCTBD2plus ribs (sCTBD3); and a deep learning-generated sCT (sCTDL) from a 1.5 T MRI in supine position. Single-fraction neoadjuvant PBI treatment plans for a 1.5 T MRI-linac were optimized on each sCT and recalculated on the planning-CT. Image evaluation was performed by assessing mean absolute error (MAE) and mean error (ME) in Hounsfield Units (HU) between the sCTs and the planning-CT. Dosimetric evaluation was performed by assessing dose differences, gamma pass rates, and dose-volume histogram (DVH) differences. The following results were obtained (median across patients for sCTBD1/sCTBD2/sCTBD3/sCTDLrespectively): MAE inside the body contour was 106/104/104/75 HU and ME was 8/9/6/28 HU, mean dose difference in the PTVGTVwas 0.15/0.00/0.00/-0.07 Gy, median gamma pass rate (2%/2 mm, 10% dose threshold) was 98.9/98.9/98.7/99.4%, and differences in DVH parameters were well below 2% for all structures except for the skin in the sCTDL. Accurate dose calculations for single-fraction neoadjuvant PBI on an MRI-linac could be performed on both bulk-density and deep learning sCT, facilitating further implementation of MRI-guided radiotherapy for breast cancer. Balancing simplicity and accuracy, sCTBD2showed the optimal number of bulk-density levels for a bulk-density approach.


Subject(s)
Neoadjuvant Therapy , Humans , Magnetic Resonance Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
2.
BMC Cancer ; 17(1): 181, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28274211

ABSTRACT

BACKGROUND: A shift towards less burdening and more patient friendly treatments for breast cancer is currently ongoing. In low-risk patients with early-stage disease, accelerated partial breast irradiation (APBI) is an alternative for whole breast irradiation following breast-conserving surgery. MRI-guided single dose ablative APBI has the potential to offer a minimally burdening, non-invasive treatment that could replace current breast-conserving therapy. METHODS: The ABLATIVE study is a prospective, single arm, multicenter study evaluating preoperative, single dose, ablative radiation treatment in patients with early-stage breast cancer. Patients with core biopsy proven non-lobular invasive breast cancer, (estrogen receptor positive, Her2 negative, maximum tumor size 3.0 cm on diagnostic MRI) and a negative sentinel node biopsy are eligible. Radiotherapy (RT) planning will be performed using a contrast enhanced (CE) planning CT-scan, co-registered with a CE-MRI, both in supine RT position. A total of twenty-five consecutive patients will be treated with a single ablative RT dose of 20 Gy to the tumor and 15 Gy to the tumorbed. Follow-up MRIs are scheduled within 1 week, 2, 4 and 6 months after single-dose RT. Breast-conserving surgery is scheduled at six months following RT. Primary study endpoint is pathological complete response. Secondary study endpoints are the radiological response and toxicity. Furthermore, patients will fill out questionnaires on quality of life and functional status. Cosmetic outcome will be evaluated by the treating radiation oncologist, patient and 'Breast Cancer Conservation Treatment cosmetic results' software. Recurrence and survival rates will be assessed. The patients will be followed up to 10 years after diagnosis. If patients give additional informed consent, a biopsy and a part of the irradiated specimen will be stored at the local Biobank and used for future research on radiotherapy response associated genotyping. DISCUSSION: The ABLATIVE study evaluates MRI-guided single dose ablative RT in patients with early-stage breast cancer, aiming at a less burdening and non-invasive alternative for current breast-conserving treatment. TRIAL REGISTRATION: ClinicalTrials.gov registration number NCT02316561 . The trial was registrated prospectively on October 10th 2014.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Aged , Aged, 80 and over , Breast Neoplasms/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Neoplasm Staging , Preoperative Care , Prospective Studies , Quality of Life , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL