Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39065509

ABSTRACT

The purpose of this study was to identify the saponin and phenolic components in root extracts of Saponaria officinalis, a widespread species, found in Cyprus. A total of six major saponins, including gypsogenin and gypsogenic acid derivatives, as well as saponariosides C, D, and E, were identified using UHPLC/Q-TOF-MS analysis, with gypsogenin derivatives being the most common saponins detected through quantitative analysis. A total of six phenolic compounds were also identified, including rutin, quercetin galactoside, syringic acid, apigenin, protocatechuic, and vanillic acid. In addition to their saponin and phenolic contents, the root extracts were prepared through different extraction methods, and their biological activity was assessed. All samples demonstrated antioxidant capacity, as well as antibacterial activity, against four bacterial strains (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Salmonella enteritidis), with the acetone extract presenting higher susceptibility. The evaluation of anticancer activity in A375 (human malignant melanoma), HeLa (human cervical epithelioid carcinoma), and HaCaT (healthy human keratinocytes) cell lines revealed that the acetone extract of S. officinalis extract demonstrated a significant inhibitory effect on the proliferation of A375 cells in a concentration-dependent manner. None of the extracts demonstrated anti-neurotoxic potential against Aß25-35 cytotoxic peptides. The results of this study support previous findings that reveal that the Saponaria species are an excellent natural source of biologically active compounds with antioxidant, antimicrobial, and anticancer properties.

2.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144548

ABSTRACT

The purpose of this study was to identify the chemical components in root extracts of Saponaria cypria, an endemic species of Cyprus. Subsequently, the synergistic bioactivity of its root extracts through different extraction procedures was also investigated for the first time. A total of nine saponins, along with six phenolic compounds, were identified and quantified using the UHPLC/Q-TOF-MS method. Additionally, S. cypria root extracts demonstrated antibacterial potential against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Salmonella enteritidis. S. aureus presented the highest susceptibility among all bacteria tested. These findings provide the first phytochemical data regarding the saponin, phenolic content and antimicrobial activity of S. cypria extracts, indicating that the Cyprus saponaria species is a rich natural source for bioactive compounds with a potentially wider bioactivity spectrum.


Subject(s)
Saponaria , Saponins , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Phenols/pharmacology , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Saponaria/chemistry , Saponins/pharmacology , Staphylococcus aureus
3.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566066

ABSTRACT

This study aimed to determine the chemical composition of different types of tissue of Cedrus brevifolia Henry (Pinaceae) methanolic extracts, namely needles, twigs, branches, and bark. Cedrus brevifolia is a narrow endemic coniferous tree species of Cyprus, growing in a sole population in the mountainous area of Paphos Forest. Chemical analysis of the extracts was performed using liquid chromatography combined with time-of-flight high-resolution mass spectrometry (LC/Q-TOF/HRMS). The majority of the 36 compounds tentatively identified belonged to the flavonoids family. The extract of needles was the richest extract in terms of secondary metabolites. The extracts were studied for their antioxidant activity using the DPPH free radical scavenging assay. Additionally, the antibacterial activity was evaluated by determining both the minimum inhibitory concentration and the minimum bactericidal concentration against Staphylococcus aureus and Escherichia coli. All extracts demonstrated antioxidant property, while bark gave the highest antioxidant capacity (IC50 value of 0.011 mg/mL) compared to the other tissues. Antibacterial activity was observed against both types of bacteria, with the extract of branches presenting the strongest activity against S. aureus (MIC, 0.097 mg/mL and MBC, 0.195 mg/mL). This is the first time that extracts of needles, twigs, branches, and bark of C. brevifolia are compared regarding their chemical composition as well as their antimicrobial and antioxidant properties.


Subject(s)
Anti-Infective Agents , Antioxidants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cedrus , Escherichia coli , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus
4.
Curr Drug Deliv ; 17(7): 542-557, 2020.
Article in English | MEDLINE | ID: mdl-32384029

ABSTRACT

Polymer-drug conjugates are polymers with drug molecules chemically attached to polymer side chains through either a weak (degradable bond) or a dynamic covalent bond. These systems are known as pro-drugs in the inactive form when passing into the blood circulation system. When the prodrug reaches the target organ, tissue or cell, the drug is activated by cleavage of the bond between the drug and polymer, under certain conditions existing in the target organ. The advantages of polymer-drug conjugates compared to other controlled-release carriers and conventional pharmaceutical formulations are the increased drug loading capacity, prolonged in vivo; circulation time, enhanced intercellular uptake, better-controlled release, improved therapeutic efficacy, and enhanced permeability and retention effect. The aim of the present review is the investigation of polymer-drug conjugates bearing anti-cancer drugs. The polymer, through its side chains, is linked to the anti-cancer drugs via; dynamic covalent bonds, such as hydrazone/imine bonds, disulfide bonds, and boronate esters. These dynamic covalent bonds are cleaved in conditions existing only in cancer cells and not in healthy ones. Thus, ensuring the selective release of drug to the targeted tissue, reducing in this way, the frequent side effects of chemotherapy, leading to a more targeted application, despite the nature of the applied polymer, possessing the ability to aim tumors selectively via; incorporation of a relative ligand.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Neoplasms/drug therapy , Polymers/chemistry , Prodrugs/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Chemistry Techniques, Synthetic/methods , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Humans , Neoplasms/pathology , Prodrugs/chemistry , Prodrugs/pharmacokinetics
5.
Cell Mol Life Sci ; 70(2): 335-56, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22945799

ABSTRACT

KIF1Bß is a kinesin-like, microtubule-based molecular motor protein involved in anterograde axonal vesicular transport in vertebrate and invertebrate neurons. Certain KIF1Bß isoforms have been implicated in different forms of human neurodegenerative disease, with characterization of their functional integration and regulation in the context of synaptic signaling still ongoing. Here, we characterize human KIF1Bß (isoform NM015074), whose expression we show to be developmentally regulated and elevated in cortical areas of the CNS (including the motor cortex), in the hippocampus, and in spinal motor neurons. KIF1Bß localizes to the cell body, axon, and dendrites, overlapping with synaptic-vesicle and postsynaptic-density structures. Correspondingly, in purified cortical synaptoneurosomes, KIF1Bß is enriched in both pre- and postsynaptic structures, forming detergent-resistant complexes. Interestingly, KIF1Bß forms RNA-protein complexes, containing the dendritically localized Arc and Calmodulin mRNAs, proteins previously shown to be part of RNA transport granules such as Purα, FMRP and FXR2P, and motor protein KIF3A, as well as Calmodulin. The interaction between KIF1Bß and Calmodulin is Ca(+2)-dependent and takes place through a domain mapped at the carboxy-terminal tail of the motor. Live imaging of cortical neurons reveals active movement by KIF1Bß at dendritic processes, suggesting that it mediates the transport of dendritically localized mRNAs. Finally, we show that synaptic recruitment of KIF1Bß is activity-dependent and increased by stimulation of metabotropic or ionotropic glutamate receptors. The activity-dependent synaptic recruitment of KIF1Bß, its interaction with Ca(2+) sensor Calmodulin, and its new role as a dendritic motor of ribonucleoprotein complexes provide a novel basis for understanding the concerted co-ordination of motor protein mobilization and synaptic signaling pathways.


Subject(s)
Central Nervous System/metabolism , Dendrites/metabolism , Kinesins/metabolism , Molecular Motor Proteins/metabolism , Motor Neurons/metabolism , Ribonucleoproteins/metabolism , Synaptic Vesicles/metabolism , Animals , Biological Transport , Calcium/metabolism , Calmodulin/metabolism , Cell Line, Tumor , Humans , Kinesins/genetics , Mice , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/etiology , Protein Isoforms/metabolism , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering , Receptors, Glutamate/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL