Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Cell Mol Life Sci ; 70(2): 335-56, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22945799

ABSTRACT

KIF1Bß is a kinesin-like, microtubule-based molecular motor protein involved in anterograde axonal vesicular transport in vertebrate and invertebrate neurons. Certain KIF1Bß isoforms have been implicated in different forms of human neurodegenerative disease, with characterization of their functional integration and regulation in the context of synaptic signaling still ongoing. Here, we characterize human KIF1Bß (isoform NM015074), whose expression we show to be developmentally regulated and elevated in cortical areas of the CNS (including the motor cortex), in the hippocampus, and in spinal motor neurons. KIF1Bß localizes to the cell body, axon, and dendrites, overlapping with synaptic-vesicle and postsynaptic-density structures. Correspondingly, in purified cortical synaptoneurosomes, KIF1Bß is enriched in both pre- and postsynaptic structures, forming detergent-resistant complexes. Interestingly, KIF1Bß forms RNA-protein complexes, containing the dendritically localized Arc and Calmodulin mRNAs, proteins previously shown to be part of RNA transport granules such as Purα, FMRP and FXR2P, and motor protein KIF3A, as well as Calmodulin. The interaction between KIF1Bß and Calmodulin is Ca(+2)-dependent and takes place through a domain mapped at the carboxy-terminal tail of the motor. Live imaging of cortical neurons reveals active movement by KIF1Bß at dendritic processes, suggesting that it mediates the transport of dendritically localized mRNAs. Finally, we show that synaptic recruitment of KIF1Bß is activity-dependent and increased by stimulation of metabotropic or ionotropic glutamate receptors. The activity-dependent synaptic recruitment of KIF1Bß, its interaction with Ca(2+) sensor Calmodulin, and its new role as a dendritic motor of ribonucleoprotein complexes provide a novel basis for understanding the concerted co-ordination of motor protein mobilization and synaptic signaling pathways.


Subject(s)
Central Nervous System/metabolism , Dendrites/metabolism , Kinesins/metabolism , Molecular Motor Proteins/metabolism , Motor Neurons/metabolism , Ribonucleoproteins/metabolism , Synaptic Vesicles/metabolism , Animals , Biological Transport , Calcium/metabolism , Calmodulin/metabolism , Cell Line, Tumor , Humans , Kinesins/genetics , Mice , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/etiology , Protein Isoforms/metabolism , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering , Receptors, Glutamate/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL