Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neuron ; 112(7): 1060-1080, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38359826

ABSTRACT

Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.


Subject(s)
Memory, Episodic , Animals , Humans , Primates , Behavior, Animal/physiology , Hippocampus/physiology
2.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-36789443

ABSTRACT

Despite bilateral hippocampal damage dating to perinatal or early-childhood period, and severely-impaired episodic memory that unfolds in later childhood, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganise to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40% while the atrophy of the uncus was moderate (-23%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions, such that the greater the damage, the more likely it is that surrounding cortical areas will be recruited to rescue the putative functions of the damaged subregions. Our findings document for the first time not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.

3.
Neuropsychol Rehabil ; : 1-20, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948582

ABSTRACT

ABSTRACTPatients with developmental amnesia (DA) have suffered hippocampal damage in infancy and subsequently shown poor episodic memory, but good semantic memory. It is not clear how patients with DA learn semantic information in the presence of episodic amnesia. However, patients with DA show good recognition memory and it is possible that semantic learning may be supported by recognition. Building on previous work, we compared two methods for supporting semantic learning in DA; recognition-learning and recall-learning. In each condition, a patient with DA (aged 8 years) was presented with semantic information in animated videos. After each presentation of a video, learning was supported by an immediate memory test. Two videos were paired with a cued recall test. Another two videos were paired with a multiple-choice test to enable recognition-based learning. The outcome measure was semantic recall performance after a short delay of 30 min and a long delay of one week. Results showed a benefit of recognition-learning compared to recall-learning on cued recall in the patient with DA (76% vs. 35%). This finding indicates that young people with severe hippocampal damage can utilize recognition to support semantic learning. This has implications for the support of school-aged children with episodic memory difficulties.

4.
Hippocampus ; 33(10): 1094-1112, 2023 10.
Article in English | MEDLINE | ID: mdl-37337377

ABSTRACT

Immature neurons expressing the Bcl2 protein are present in various regions of the mammalian brain, including the amygdala and the entorhinal and perirhinal cortices. Their functional role is unknown but we have previously shown that neonatal and adult hippocampal lesions increase their differentiation in the monkey amygdala. Here, we assessed whether hippocampal lesions similarly affect immature neurons in the entorhinal and perirhinal cortices. Since Bcl2-positive cells were found mainly in areas Eo, Er, and Elr of the entorhinal cortex and in layer II of the perirhinal cortex, we also used Nissl-stained sections to determine the number and soma size of immature and mature neurons in layer III of area Er and layer II of area 36 of the perirhinal cortex. We found different structural changes in these regions following hippocampal lesions, which were influenced by the time of the lesion. In neonate-lesioned monkeys, the number of immature neurons in the entorhinal and perirhinal cortices was generally higher than in controls. The number of mature neurons was also higher in layer III of area Er of neonate-lesioned monkeys but no differences were found in layer II of area 36. In adult-lesioned monkeys, the number of immature neurons in the entorhinal cortex was lower than in controls but did not differ from controls in the perirhinal cortex. The number of mature neurons in layer III of area Er did not differ from controls, but the number of small, mature neurons in layer II of area 36 was lower than in controls. In sum, hippocampal lesions impacted populations of mature and immature neurons in discrete regions and layers of the entorhinal and perirhinal cortices, which are interconnected with the amygdala and provide major cortical inputs to the hippocampus. These structural changes may contribute to some functional recovery following hippocampal injury in an age-dependent manner.


Subject(s)
Perirhinal Cortex , Animals , Macaca mulatta , Hippocampus/physiology , Entorhinal Cortex , Amygdala/physiology , Mammals
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206571

ABSTRACT

In recent years, a large population of immature neurons has been documented in the paralaminar nucleus of the primate amygdala. A substantial fraction of these immature neurons differentiate into mature neurons during postnatal development or following selective lesion of the hippocampus. Notwithstanding a growing number of studies on the origin and fate of these immature neurons, fundamental questions about the life and death of these neurons remain. Here, we briefly summarize what is currently known about the immature neurons present in the primate ventral amygdala during development and in adulthood, as well as following selective hippocampal lesions. We provide evidence confirming that the distribution of immature neurons extends to the anterior portions of the entorhinal cortex and layer II of the perirhinal cortex. We also provide novel arguments derived from stereological estimates of the number of mature and immature neurons, which support the view that the migration of immature neurons from the lateral ventricle accompanies neuronal maturation in the primate amygdala at all ages. Finally, we propose and discuss the hypothesis that increased migration and maturation of neurons in the amygdala following hippocampal dysfunction may be linked to behavioral alterations associated with certain neurodevelopmental disorders.


Subject(s)
Amygdala/cytology , Cell Differentiation , Neurons/cytology , Neurons/metabolism , Age Factors , Amygdala/metabolism , Animals , Biomarkers , Cell Count , Cell Death , Cell Survival , Gene Expression , Hippocampus/cytology , Hippocampus/metabolism , Immunohistochemistry , Primates , Temporal Lobe/cytology , Temporal Lobe/metabolism
6.
J Comp Neurol ; 526(13): 2115-2132, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30004581

ABSTRACT

The entorhinal cortex is a prominent structure of the medial temporal lobe, which plays a pivotal role in the interaction between the neocortex and the hippocampal formation in support of declarative and spatial memory functions. We implemented design-based stereological techniques to provide estimates of neuron numbers, neuronal soma size, and volume of different layers and subdivisions of the entorhinal cortex in adult rhesus monkeys (Macaca mulatta; 5-9 years of age). These data corroborate the structural differences between different subdivisions of the entorhinal cortex, which were shown in previous connectional and cytoarchitectonic studies. In particular, differences in the number of neurons contributing to distinct afferent and efferent hippocampal pathways suggest not only that different types of information may be more or less segregated between caudal and rostral subdivisions, but also, and perhaps most importantly, that the nature of the interaction between the entorhinal cortex and the rest of the hippocampal formation may vary between different subdivisions. We compare our quantitative data in monkeys with previously published stereological data for the rat and human, in order to provide a perspective on the relative development and structural organization of the main subdivisions of the entorhinal cortex in two model organisms widely used to decipher the basic functional principles of the human medial temporal lobe memory system. Altogether, these data provide fundamental information on the number of functional units that comprise the entorhinal-hippocampal circuits and should be considered in order to build realistic models of the medial temporal lobe memory system.


Subject(s)
Entorhinal Cortex/anatomy & histology , Afferent Pathways/cytology , Afferent Pathways/physiology , Animals , Cell Count , Cell Size , Efferent Pathways/cytology , Efferent Pathways/physiology , Entorhinal Cortex/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Immunohistochemistry , Macaca mulatta , Male , Memory/physiology , Neurons/physiology , Neurons/ultrastructure
7.
Brain Struct Funct ; 222(9): 3899-3914, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28488186

ABSTRACT

Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.


Subject(s)
Hippocampus/injuries , Memory/physiology , Neural Pathways/physiology , Temporal Lobe/physiology , Analysis of Variance , Animals , Animals, Newborn , Brain Mapping , Cell Count , Exploratory Behavior/physiology , Female , Gene Expression/drug effects , Gene Expression/physiology , Hippocampus/pathology , Macaca mulatta , Male , Proto-Oncogene Proteins c-fos/metabolism
8.
Proc Natl Acad Sci U S A ; 113(50): 14420-14425, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911768

ABSTRACT

A large population of immature neurons is present in the ventromedial portion of the adult primate amygdala, a region that receives substantial direct projections from the hippocampal formation. Here, we show the effects of neonatal (n = 8) and adult (n = 6) hippocampal lesions on the populations of mature and immature neurons in the paralaminar, lateral, and basal nuclei of the adult monkey amygdala. Compared with unoperated controls (n = 7), the number of mature neurons was about 70% higher in the paralaminar nucleus of neonate- and adult-lesioned monkeys, and 40% higher in the lateral and basal nuclei of neonate-lesioned monkeys. The number of immature neurons in the paralaminar nucleus was 40% higher in neonate-lesioned monkeys and 30% lower in adult-lesioned monkeys. Similar changes in neuron numbers were also found in two monkeys with nonexperimental, selective, bilateral hippocampal damage. These changes in neuron numbers following hippocampal lesions appear to reflect the differentiation of immature neurons present in the paralaminar nucleus. After adult lesions, the differentiation of immature neurons was essentially restricted to the paralaminar nucleus and was associated with a decrease in the population of immature neurons. In contrast, after neonatal lesions, the differentiation of immature neurons involved the paralaminar, lateral, and basal nuclei. It was associated with an increase in the population of immature neurons in the paralaminar nucleus. Such lesion-induced neuronal plasticity sheds new light on potential mechanisms that may facilitate functional recovery following focal brain injury.


Subject(s)
Amygdala/pathology , Hippocampus/injuries , Hippocampus/pathology , Neural Stem Cells/pathology , Amygdala/physiopathology , Animals , Animals, Newborn , Cell Count , Cell Differentiation , Cell Movement , Female , Hippocampus/physiopathology , Macaca mulatta , Male , Neural Stem Cells/physiology , Neuronal Plasticity , Neurons/pathology , Neurons/physiology
9.
J Comp Neurol ; 520(16): 3745-63, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22523001

ABSTRACT

The amygdala is the central component of a functional brain system regulating fear and emotional behaviors. Studies of the ontogeny of fear behaviors reveal the emergence of distinct fear responses at different postnatal ages. Here, we performed a stereological analysis of the rat amygdala to characterize the cellular changes underlying its normal structural development. Distinct amygdala nuclei exhibited different patterns of postnatal development, which were largely similar to those we have previously shown in monkeys. The combined volume of the lateral, basal, and accessory basal nuclei increased by 113% from 1 to 3 weeks of age and by an additional 33% by 7 months of age. The volume of the central nucleus increased only 37% from 1 to 2 weeks of age and 38% from 2 weeks to 7 months. At 1 week of age, the medial nucleus was 77% of the 7-month-old's volume and exhibited a constant, marginal increase until 7 months. Neuron number did not differ in the amygdala from 1 week to 7 months of age. In contrast, astrocyte number decreased from 3 weeks to 2 months of age in the whole amygdala. Oligodendrocyte number increased in all amygdala nuclei from 3 weeks to 7 months of age. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the rat amygdala is not fully mature for an extended period postnatally. We identified different periods of postnatal development of distinct amygdala nuclei and cellular components, which are concomitant with the ontogeny of different fear and emotional behaviors.


Subject(s)
Amygdala/cytology , Amygdala/growth & development , Animals , Image Processing, Computer-Assisted , Rats , Rats, Sprague-Dawley
10.
J Comp Neurol ; 520(9): 1965-84, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22173686

ABSTRACT

Abnormal development of the amygdala has been linked to several neurodevelopmental disorders, including schizophrenia and autism. However, the postnatal development of the amygdala is not easily explored at the cellular level in humans. Here we performed a stereological analysis of the macaque monkey amygdala in order to characterize the cellular changes underlying its normal structural development in primates. The lateral, basal, and accessory basal nuclei exhibited the same developmental pattern, with a large increase in volume between birth and 3 months of age, followed by slower growth continuing beyond 1 year of age. In contrast, the medial nucleus was near adult size at birth. At birth, the volume of the central nucleus was half of the adult value; this nucleus exhibited significant growth even after 1 year of age. Neither neuronal soma size, nor neuron or astrocyte numbers changed during postnatal development. In contrast, oligodendrocyte numbers increased substantially, in parallel with an increase in amygdala volume, after 3 months of age. At birth, the paralaminar nucleus contained a large pool of immature neurons that gradually developed into mature neurons, leading to a late increase in the volume of this nucleus. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the amygdala is not fully mature for some time postnatally. We identified different periods during which pathogenic factors might lead to the abnormal development of distinct amygdala circuits, which may contribute to different human neurodevelopmental disorders associated with alterations of amygdala structure and functions.


Subject(s)
Amygdala/growth & development , Macaca mulatta/anatomy & histology , Macaca mulatta/growth & development , Stereotaxic Techniques , Age Factors , Amygdala/cytology , Analysis of Variance , Animals , Female , Male , Neuroglia/physiology , Neurons/physiology
11.
J Comp Neurol ; 519(16): 3218-39, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21618234

ABSTRACT

The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings.


Subject(s)
Amygdala/anatomy & histology , Animals , Female , Macaca mulatta , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...