Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 192(1): 141-159, 2022 01.
Article in English | MEDLINE | ID: mdl-34459966

ABSTRACT

Melatonin, the key messenger of photoperiodic information, is synthesized in the pineal gland by arylalkylamine N-acetyltransferase enzyme (AANAT). It binds to specific receptors MT1 and MT2 located in the hypothalamus and pituitary gland. Melatonin can modulate the reproductive axis affecting the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). The South American plains vizcacha, Lagostomus maximus, shows natural poliovulation of up to 800 oocytes per estrous cycle, a 154-day long pregnancy, and reactivation of the reproductive axis at mid-gestation with pre-ovulatory follicular recruitment, presence of active corpora lutea, and variations of the endocrine status. Here we analyzed the involvement of melatonin in the modulation of the hypothalamic and pituitary gland physiology of vizcacha thorough several approaches, including histological localization of melatoninergic system components, assessment of melatoninergic components expression throughout the reproductive cycle, and evaluation of the effect of melatonin on hypothalamic and pituitary activities during the follicular and luteal phases of the estrous cycle. AANAT and melatonin receptors were localized in the pineal gland and preoptic area of the hypothalamus. Increase in pineal AANAT and serum melatonin expression was observed as pregnancy progressed, with the lowest hypothalamic MT1 and MT2 levels at mid-pregnancy. Pulsatility assays demonstrated that melatonin induces GnRH and LH secretion at luteal phase. The melatoninergic system effects on hypothalamic and pituitary gland hormones secretion during pregnancy pinpoint to melatonin as a potential key factor underlying the reactivation of the reproductive axis activity at mid-gestation.


Subject(s)
Melatonin , Animals , Female , Hypothalamus/metabolism , Luteinizing Hormone/metabolism , Melatonin/metabolism , Pituitary Gland/metabolism , Pregnancy , South America
2.
J Mol Histol ; 50(6): 515-531, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31515635

ABSTRACT

The striatum is an essential component of the basal ganglia that regulatessensory processing, motor, cognition, and behavior. Depending on the species, the striatum shows a unique structure called caudate-putamen as in mice, or its separation into two regions called caudate and lenticular nuclei, the latter formed by putamen and globus pallidus areas, as in primates. These structures have two compartments, striosome and matrix. We investigated the structural organization, GABAergic and tyrosine hydroxylase (TH) expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus. Its striatum showed regionalization arising from the presence of an internal capsule, and a similar organization to a striosome-matrix compartmentalization. GABAergic neurons in the matrix of caudate exhibited parvalbumin, calretinin, calbindin, GAD65, and NADPH-d-immunoreactivity. These were also expressed in cells of the putamen with the exception of calretinin showing neurofibers localization. Globus pallidus showed parvalbumin- and GAD65-immunoreactive cells, and calretinin- and calbindin-immunoreactive neuropil, plus GABA-A-immunoreactive neurofibers. NADPH-d-, GAD65- and GABA-A-immunoreactive neurons were larger than parvalbumin-, calretinin-, and calbindin-immunoreactive cells, whereas calbindin-immunoreactive cells were the most abundant. In addition, TH-immunoreactive neuropil was observed in the matrix of the striatum. A significant larger TH-immunoreactive area and neuron number was found in females compared to males. The presence of an internal capsule suggests an adaptive advantage concerning motor and cognitive abilities favoring reaction time in response to predators. In an anatomy-evolutive perspective, the striatum of vizcacha seems to be closer to that of humans than to that of laboratory traditional models such as mouse.


Subject(s)
Corpus Striatum/metabolism , GABAergic Neurons/metabolism , Globus Pallidus/metabolism , Tyrosine 3-Monooxygenase/metabolism , Animals , Calbindin 2/metabolism , Calbindins/metabolism , Corpus Striatum/anatomy & histology , Female , Globus Pallidus/anatomy & histology , Humans , Immunohistochemistry , Male , Mice , Parvalbumins/metabolism , Rodentia
3.
Gen Comp Endocrinol ; 273: 40-51, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29656043

ABSTRACT

The South American plains vizcacha, Lagostomus maximus, is a caviomorph rodent native from Argentina, Bolivia and Paraguay. It shows peculiar reproductive features like pre-ovulatory follicle recruitment during pregnancy with an ovulatory process at around mid-gestation. We have described the activation of the hypothalamic - pituitary - ovarian (HPO) axis during pregnancy. A progressive decrease of progesterone (P4) at mid-pregnancy elicits the delivery of gonadotropin-releasing hormone (GnRH) with the consequent secretion of follicle stimulating hormone (FSH) and estradiol (E2) followed by luteinizing hormone (LH) release resulting in follicular luteinization and the P4 concentration recover. Pituitary gland is the central regulator of the HPO axis being E2 a key hormone involved in the regulation of its activity. In this work we analyzed the action of E2 on the pituitary response to the GnRH wave as well as its involvement on LH secretion at mid-gestation in L. maximus. The expression of GnRHR at the pituitary pars distalis showed a significant decrease at mid-pregnancy compared to early- and term-gestating females. ERα showed a significant increment from mid-gestation whereas ERß did not show variations throughout pregnancy; whereas the LH expression in the pituitary pars distalis showed a significant increase at mid-gestation, concordantly with serum LH, which was followed by a decrease at term-gestation with similar values than at early-pregnancy. The number of cells with co-localization of ERα and GnRHR showed a decline at mid-pregnancy related to early- and term-gestation, whereas the cells with co-localization of ERα and LH increased at mid- and term-pregnancy. On the other hand, ex vivo measuring of LH pulsatility showed a significant increment in the total mass of LH delivered at mid-pregnancy followed by a decrease at term-gestation. The stimulation of ERα with the PPT specific agonist induced a significant increment in the total mass of LH released, whereas no changes were determined when ERß was stimulated with its specific agonist MPP. These results suggest that LH pulsatility rise at mid-pregnancy would be enabled by the increase of E2 acting through ERα.


Subject(s)
Estrogen Receptor alpha/metabolism , Luteinizing Hormone/metabolism , Pituitary Gland/metabolism , Rodentia/metabolism , Animals , Antineoplastic Agents, Hormonal , Estrogen Receptor beta/metabolism , Female , Pituitary Gland, Anterior/metabolism , Pregnancy , Receptors, LHRH/metabolism
4.
Gen Comp Endocrinol ; 250: 162-174, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28645634

ABSTRACT

In mammals, hormonal regulation during gestation is crucial for embryo implantation and pregnancy success. This regulation is controlled through the level of progesterone (P4) that blocks the activity of the hypothalamic-hypophyseal-gonadal (HHG) axis. Previous studies in the pregnant South American plains vizcacha, Lagostomus maximus, have shown that the HHG axis activates around mid-gestation, promoting pre-ovulatory follicle formation. However, the characterization of the hormonal dynamics throughout gestation and its ovarian correlation has not been studied in depth. We studied the ovarian dynamics of L. maximus and its correlation with the hormonal profile during gestation, analyzing serum levels of P4, 17ß-estradiol (E2), 4Δ-androstenedione (A4), luteinizing hormone (LH) and follicle stimulating hormone (FSH) as well as the ovarian distribution and expression of their receptors. Additionally, we have analyzed the folliculogenesis and accessory corpora lutea (ACL) formation. P4 showed two concentration peaks reaching its highest level at mid-gestation decreasing at 91-100days post-coitum. P4 decrease is followed by an increase of circulating levels of A4, E2, FSH and LH and with an elevated number of antral/pre-ovulatory follicles which express PGR, ESR1, ESR2, AR, LHR and FSHR. In addition, ACL with oocyte retention and cytoplasmic lipid droplets in luteal cells were detected at this time point. These results show that in L. maximus the decrease of P4 level from mid-gestation enables follicular recruitment until pre-ovulatory stage and the development of functional ACL.


Subject(s)
Ecosystem , Hormones/metabolism , Ovarian Follicle/metabolism , Rodentia/metabolism , Animals , Corpus Luteum/metabolism , Corpus Luteum/ultrastructure , Estradiol/blood , Female , Follicle Stimulating Hormone/metabolism , Luteinizing Hormone/metabolism , Ovarian Follicle/cytology , Postpartum Period , Pregnancy , Receptors, Cell Surface/metabolism
5.
J Mol Histol ; 48(3): 259-273, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28317066

ABSTRACT

Gonadotropin-releasing hormone (GnRH) is the key regulator of the hypothalamic-pituitary-gonadal axis. Estradiol (E2) affects GnRH synthesis and delivery. Hypothalamic estrogen receptors (ER) modulate GnRH expression acting as transcription factors. The South American plains vizcacha, Lagostomus maximus, is able to ovulate up to 800 oocytes per reproductive cycle, and shows continuous folliculogenesis with pre-ovulatory follicle formation and an ovulatory event at mid-gestation. The aim of this work was to analyze the hypothalamic expression of ER in the vizcacha at different gestational time-points, and its relationship with GnRH expression, serum luteinizing hormone (LH) and E2. The hormonal pattern of mid-gestating vizcachas was comparable to ovulating-females with significant increases in GnRH, LH and E2. Hypothalamic protein and mRNA expression of ERα varied during pregnancy with a significant increase at mid-gestation whereas ERß mRNA expression did not show significant variations. Hypothalamic immunolocalization of ERα was observed in neurons of the diagonal band of Brocca, medial preoptic area (mPOA), periventricular, suprachiasmatic, supraoptic (SON), ventromedial, and arcuate nuclei, and medial eminence, with a similar distribution throughout gestation. In addition, all GnRH neurons of the mPOA and SON showed ERα expression with no differences across the reproductive status. The correlation between GnRH and ERα at mid-gestation, and their co-localization in the hypothalamic neurons of the vizcacha, provides novel information compared with other mammals suggesting a direct action of estrogen as part of a differential reproductive strategy to assure GnRH synthesis during pregnancy.


Subject(s)
Estrogen Receptor alpha/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/cytology , Neurons/chemistry , Animals , Estradiol/metabolism , Female , Gestational Age , Luteinizing Hormone/blood , Pregnancy , Rodentia
6.
Gen Comp Endocrinol ; 232: 174-84, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26704854

ABSTRACT

Gonadotropin-releasing hormone (GnRH) is the regulator of the hypothalamic-hypophyseal-gonadal (HHG) axis. GnRH and GAP (GnRH-associated protein) are both encoded by a single preprohormone. Different variants of GnRH have been described. In most mammals, GnRH is secreted in a pulsatile manner that stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The South-American plains vizcacha, Lagostomus maximus, is a rodent with peculiar reproductive features including natural poly-ovulation up to 800 oocytes per estrous cycle, pre-ovulatory follicle formation throughout pregnancy and an ovulatory process which takes place at mid-gestation and adds a considerable number of secondary corpora lutea. Such features should occur under a special modulation of the HHG axis, guided by GnRH. The aim of this study was to sequence hypothalamic GnRH preprogonadotrophin mRNA in the vizcacha, to compare it with evolutionarily related species and to identify its expression, distribution and pulsatile pattern of secretion. The GnRH1variant was detected and showed the highest homology with that of chinchilla, its closest evolutionarily related species. Two isoforms of transcripts were identified, carrying the same coding sequence, but different 5' untranslated regions. This suggests a sensitive equilibrium between RNA stability and translational efficiency. A predominant hypothalamic localization and a pulsatile secretion pattern of one pulse of GnRH every hour were found. The lower homology found for GAP, also among evolutionarily related species, depicts a potentially different bioactivity.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Animals , Female , Pregnancy , Sequence Analysis , South America , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...