Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(34): 41209-41219, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34415724

ABSTRACT

Enabling capillary wicking on bulk metal alloys is challenging due to processing complexity at different size scales. This work presents a laser-chemical surface treatment to fabricate superwicking patterns guided by a superhydrophobic region over a large-area metal alloy surface. The laser-chemical surface treatment generates surface micro/nanostructures and desirable surface chemistry simultaneously. The superhydrophobic surface was first fabricated over the whole surface by laser treatment under water confinement and fluorosilane treatment; subsequently, superwicking stripes were processed by a second laser treatment in air and cyanosilane treatment. The resultant surface shows superwicking regions surrounded by superhydrophobic regions. During the process, superwicking regions possess dual-scale structures and polar nitrile surface chemistry. In contrast, random nanoscale structures and fluorocarbon chemistry are generated on the superhydrophobic region of the aluminum alloy 6061 substrates. The resultant superwicking region demonstrates self-propelling anti-gravity liquid transport for methanol and water. The combination of the capillary effect of the dual-scale surface microgrooves and the water affinitive nitrile group contributes toward the self-propelling movement of water and methanol at the superwicking region. The initial phase of wicking followed Washburn dynamics, whereas it entered a non-linear regime in the later phase. The wicking height and rate are regulated by microgroove geometry and spacing.

2.
Sci Rep ; 11(1): 3155, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33542462

ABSTRACT

A finite temperature Stoner-Wohlfarth model has been used to calculate the transverse susceptibility of an ensemble of ferromagnetic particles with distributed anisotropy. The simulated transverse susceptibility is in excellent agreement with data acquired from thin film samples of elemental nickel, deposited on 128° Y-cut LiNb03. A strong, well-defined, uniaxial anisotropy is induced in the nickel film by low temperature annealing. Three peaks in the transverse susceptibility are observed in both the measured and simulated data when the applied field is misaligned with the hard axis by a few degrees. Two broad, reversible peaks occur when the applied field is equal to the anisotropy field. A single, sharp irreversible peak occurs when the absolute value of the applied field is less than the anisotropy field, and is associated with a metastable magnetic state. The irreversible peak disappears when the applied field is well aligned with the hard axis. The observed transverse susceptibility is consistent with the theoretical predictions of Aharoni et al. and is therefore consistent with the Stoner-Wohlfarth model.

4.
Sci Rep ; 10(1): 15141, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32934315

ABSTRACT

The Stoner-Wohlfarth model predicts the crossing of the ascending and descending branches of the hysteretic magnetization curve. This crossing behavior has widely been dismissed, with the claim that it violates the laws of thermodynamics. Experimental verification of hysteresis branch crossing has not been acknowledged in the literature. Here we show, both theoretically and experimentally, that the crossing of the ascending and descending branches of the magnetization curve is a robust, reproducible phenomenon which does not violate any fundamental law.

5.
Nanomaterials (Basel) ; 10(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825778

ABSTRACT

By combining the enhanced photosensitive properties of zinc oxide nanoparticles and the excellent transport characteristics of graphene, UV-sensitive, solar-blind hybrid optoelectronic devices have been demonstrated. These hybrid devices offer high responsivity and gain, making them well suited for photodetector applications. Here, we report a hybrid ZnO nanoparticle/graphene phototransistor that exhibits a responsivity up to 4 × 104 AW-1 and gain of up to 1.3 × 105 with high UV wavelength selectivity. ZnO nanoparticles were synthesized by pulsed laser fragmentation in liquid to attain a simple, efficient, ligand-free method for nanoparticle fabrication. By combining simple fabrication processes with a promising device architecture, highly sensitive ZnO nanoparticle/graphene UV photodetectors were successfully demonstrated.

6.
Opt Express ; 28(15): 22891-22898, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752542

ABSTRACT

Self-assembled plasmonic metasurfaces are promising optical platforms to achieve accessible flat optics, due to their strong light-matter interaction, nanometer length scale precision, large area, light weight, and high-throughput fabrication. Here, using photothermal continuous wave laser lithography, we show the spectral and spatial tuning of metasurfaces comprised of a monolayer of ligand capped hexagonally packed gold nanospheres. To tune the spectral response of the metasurfaces, we show that by controlling the intensity of a laser focused onto the metasurface that the absorption peak can be reconfigured from the visible to near-infrared wavelength. The irreversible spectral tuning mechanism is attributed to photothermal modification of the surface morphology. Combining self-assembled metasurfaces with laser lithography, we demonstrate an optically thin (λ/42), spectrally selective plasmonic Fresnel zone plate. This work establishes a new pathway for creating flat, large area, frequency selective optical elements using self-assembled plasmonic metasurfaces and laser lithography.

7.
Sci Rep ; 9(1): 11329, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31383877

ABSTRACT

Direct calorimetric measurements of a solid state passive switchable radiator for spacecraft thermal control have been performed in a simulated space environment. Dynamic emissivity control is provided by the thermochromic phase change in a multilayer VO2 thin film based resonant absorber. The measured radiated power difference between 300 K and 373 K was 480 W/m2 corresponding to a 7× difference in radiative cooling power. We present theoretical and experimental radiator values for both normal and hemispherical as well the optical properties of VO2 as determined via infrared spectroscopic ellipsometry.

8.
Light Sci Appl ; 8: 51, 2019.
Article in English | MEDLINE | ID: mdl-31231517

ABSTRACT

We demonstrate the generation of nanosecond mid-infrared pulses via fast modulation of thermal emissivity enabled by the absorption of visible pump pulses in unpatterned silicon and gallium arsenide. The free-carrier dynamics in these materials result in nanosecond-scale modulation of thermal emissivity, which leads to nanosecond pulsed thermal emission. To our knowledge, the nanosecond thermal-emissivity modulation in this work is three orders of magnitude faster than what has been previously demonstrated. We also indirectly observed subnanosecond thermal pulses from hot carriers in semiconductors. The experiments are well described by our multiphysics model. Our method of converting visible pulses into the mid infrared using modulated emissivity obeys different scaling laws and can have significant wavelength tunability compared to approaches based on conventional nonlinearities.

9.
ACS Nano ; 13(4): 3875-3883, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30794377

ABSTRACT

Information display utilizing plasmonic color generation has recently emerged as an alternative paradigm to traditional printing and display technologies. However, many implementations so far have either presented static pixels with a single display state or rely on relatively slow switching mechanisms such as chemical transformations or liquid crystal transitions. Here, we demonstrate spatial, spectral, and temporal control of light using dynamic plasmonic pixels that function through the electric-field-induced alignment of plasmonic nanorods in organic suspensions. By tailoring the geometry and composition (Au and Au@Ag) of the nanorods, we illustrate light modulation across a significant portion of the visible and infrared spectrum (600-2400 nm). The fast (∼30 µs), reversible nanorod alignment is manifested as distinct color changes, characterized by shifts of observed chromaticity and luminance. Integration into larger device architectures is showcased by the fabrication of a seven-segment numerical indicator. The control of light on demand achieved in these dynamic plasmonic pixels establishes a favorable platform for engineering high-performance optical devices.

10.
Opt Express ; 26(8): 9614, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715910

ABSTRACT

We correct a nomenclature error for the plasmon ruler equation used to fit the simulation data in Fig. 2(d) [Opt. Express24, 27360 (2016)].

11.
ACS Appl Mater Interfaces ; 9(2): 1577-1584, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27997109

ABSTRACT

Epitaxial VO2/TiO2 thin film heterostructures were grown on (100) (m-cut) Al2O3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO2/TiO2/Al2O3 heterostructures as a function of TiO2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO2 buffer films is responsible for the partially strained VO2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.

12.
Opt Express ; 24(24): 27360-27370, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906308

ABSTRACT

We created centimeter-scale area metasurfaces consisting of a quasi-hexagonally close packed monolayer of gold nanospheres capped with alkanethiol ligands on glass substrates using a directed self-assembly approach. We experimentally characterized the morphology and the linear and nonlinear optical properties of metasurfaces. We show these metasurfaces, with interparticle gaps of 0.6 nm, are modeled well using a classical (without charge transfer) description. We find a large dispersion of linear refractive index, ranging from values less than vacuum, 0.87 at 600 nm, to Germanium-like values of 4.1 at 880 nm, determined using spectroscopic ellipsometry. Nonlinear optical characterization was carried out using femtosecond Z-scan and we observe saturation behavior of the nonlinear absorption (NLA) and nonlinear refraction (NLR). We find a negative NLR from these metasurfaces two orders of magnitude larger (n2,sat = -7.94x10-9 cm2/W at Isat,n2 = 0.43 GW/cm2) than previous reports on gold nanostructures at similar femtosecond time scales. We also find the magnitude of the NLA comparable to the largest values reported (ß2,sat = -0.90x105 cm/GW at Isat,ß2 = 0.34 GW/cm2). Precise knowledge of the index of refraction is of crucial importance for emerging dispersion engineering technologies. Furthermore, utilizing this directed self-assembly approach enables the nanometer scale resolution required to develop the unique optical response and simultaneously provides high-throughput for potential device realization.

13.
Anal Chem ; 83(3): 1084-92, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21174437

ABSTRACT

Detection of explosives is important for public safety. A recently developed low-temperature plasma (LTP) probe for desorption and ionization of samples in the ambient environment ( Anal. Chem. 2008 , 80 , 9097 ) is applied in a comprehensive evaluation of analytical performance for rapid detection of 13 explosives and explosives-related compounds. The selected chemicals [pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), cyclo-1,3,5-trimethylenetrinitramine (RDX), tetryl, cyclo-1,3,5,7-tetramethylenetetranitrate (HMX), hexamethylene triperoxide diamine (HMTD), 2,4-dinitrotoluene, 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2,6-dinitrotoluene, and 4-nitrotoluene) were tested at levels in the range 1 pg-10 ng. Most showed remarkable sensitivity in the negative-ion mode, yielding limits of detection in the low picogram range, particularly when analyzed from a glass substrate heated to 120 °C. Ions typically formed from these molecules (M) by LTP include [M + NO(2)](-), [M](-), and [M - NO(2)](-). The LTP-mass spectrometry methodology displayed a linear signal response over three orders of magnitude of analyte amount for the studied explosives. In addition, the effects of synthetic matrices and different types of surfaces were evaluated. The data obtained demonstrate that LTP-MS allows detection of ultratrace amounts of explosives and confirmation of their identity. Tandem mass spectrometry (MS/MS) was used to confirm the presence of selected explosives at low levels; for example, TNT was confirmed at absolute levels as low as 0.6 pg. Linearity and intra- and interday precision were also evaluated, yielding results that demonstrate the potential usefulness and ruggedness of LTP-MS for the detection of explosives of different classes. The use of ion/molecule reactions to form adducts with particular explosives such as RDX and HMX was shown to enhance the selectivity and specificity. This was accomplished by merging the discharge gas with an appropriate reagent headspace vapor (e.g., from a 0.2% trifluoracetic acid solution).


Subject(s)
Mass Spectrometry/methods , Mass Spectrometry/instrumentation , Temperature
14.
Opt Lett ; 35(23): 4039-41, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21124605

ABSTRACT

A laser printing technique was used to fabricate split-ring resonators (SRRs) on Si substrates for terahertz (THz) metamaterials and their resonance behavior evaluated by THz time-domain spectroscopy. The laser-printed Ag SRRs exhibited sharp edge definition and excellent thickness uniformity, which resulted in an electromagnetic response similar to that from identical Au SRR structures prepared by conventional photolithography. These results demonstrate that laser printing is a practical alternative to conventional photolithography for fabricating metamaterial structures at terahertz frequencies, since it allows their design to be easily modified and optimized.

16.
Anal Chem ; 82(15): 6584-6592, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20698581

ABSTRACT

The discontinuous atmospheric pressure interface (DAPI) has allowed the transfer of ions from atmospheric pressure ionization sources to an ion trap mass analyzer in hand-held mass spectrometers with miniature pumping systems at transfer efficiencies high enough for proper chemical analysis. The DAPI potentially would allow a significant enhancement to the mass analysis efficiency of laboratory-scale mass spectrometers, which have pumping systems of much larger capacities. A laboratory-scale mass spectrometer with a DAPI-RIT (rectilinear ion trap)-DAPI configuration has been developed to explore this possibility. The gas dynamic effects on ion trapping and mass analysis have been studied at various conditions. A pulsed nanoelectrospray ionization source synchronized with the DAPI has been implemented to improve the sample usage efficiency as well as to adjust the number of ions to be trapped for MS analysis, so that space charge effects can be avoided. Single-scan spectra of peptides were recorded with an ionization time as short as 1 mus, corresponding to an analyte consumption of several attomoles. The simplicity of application of the DAPI for performing ion/molecule and ion/ion reactions has also been demonstrated with proton transfer and electron transfer dissociation reactions with peptides.

17.
Anal Chem ; 82(15): 6584-92, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20700912

ABSTRACT

The discontinuous atmospheric pressure interface (DAPI) has allowed the transfer of ions from atmospheric pressure ionization sources to an ion trap mass analyzer in hand-held mass spectrometers with miniature pumping systems at transfer efficiencies high enough for proper chemical analysis. The DAPI potentially would allow a significant enhancement to the mass analysis efficiency of laboratory-scale mass spectrometers, which have pumping systems of much larger capacities. A laboratory-scale mass spectrometer with a DAPI-RIT (rectilinear ion trap)-DAPI configuration has been developed to explore this possibility. The gas dynamic effects on ion trapping and mass analysis have been studied at various conditions. A pulsed nanoelectrospray ionization source synchronized with the DAPI has been implemented to improve the sample usage efficiency as well as to adjust the number of ions to be trapped for MS analysis, so that space charge effects can be avoided. Single-scan spectra of peptides were recorded with an ionization time as short as 1 micros, corresponding to an analyte consumption of several attomoles. The simplicity of application of the DAPI for performing ion/molecule and ion/ion reactions has also been demonstrated with proton transfer and electron transfer dissociation reactions with peptides.


Subject(s)
Mass Spectrometry/instrumentation , Atmospheric Pressure , Ions/chemistry , Mass Spectrometry/methods , Peptides/chemistry
18.
Analyst ; 135(5): 971-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20419245

ABSTRACT

Low-temperature plasma (LTP) permits direct ambient ionization and mass analysis of samples in their native environment with minimal or no prior preparation. LTP utilizes dielectric barrier discharges (DBDs) to create a low power plasma which is guided by gas flow onto the sample from which analytes are desorbed and ionized. In this study, the potential of LTP-MS for the detection of pesticide residues in food is demonstrated. Thirteen multi-class agricultural chemicals were studied (ametryn, amitraz, atrazine, buprofezin, DEET, diphenylamine, ethoxyquin, imazalil, isofenphos-methyl, isoproturon, malathion, parathion-ethyl and terbuthylazine). To evaluate the potential of the proposed approach, LTP-MS experiments were performed directly on fruit peels as well as on fruit/vegetable extracts. Most of the agrochemicals examined displayed remarkable sensitivity in the positive ion mode, giving limits of detection (LOD) for the direct measurement in the low picogram range. Tandem mass spectrometry (MS/MS) was used to confirm identification of selected pesticides by using for these experiments spiked fruit/vegetable extracts (QuEChERS, a standard sample treatment protocol) at levels as low as 1 pg, absolute, for some of the analytes. Comparisons of the data obtained by direct LTP-MS were made with the slower but more accurate conventional LC-MS/MS procedure. Herbicides spiked in aqueous solutions were detectable at LODs as low as 0.5 microg L(-1) without the need for any sample preparation. The results demonstrate that ambient LTP-MS can be applied for the detection and confirmation of traces of agrochemicals in actual market-purchased produce and in natural water samples. Quantitative analysis was also performed in a few selected cases and displayed a relatively high degree of linearity over four orders of magnitude.


Subject(s)
Agrochemicals/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Water Pollutants, Chemical/analysis , Agrochemicals/chemistry , Cold Temperature , Food Analysis , Fruit/chemistry , Limit of Detection , Vegetables/chemistry , Water Pollutants, Chemical/chemistry
19.
Rapid Commun Mass Spectrom ; 23(19): 3057-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19705382

ABSTRACT

A fast, reagentless, and direct method is presented for the mass spectrometric analysis of olive oil without any sample pretreatment whatsoever. An ambient ionization technique, the low-temperature plasma (LTP) probe, based on dielectric barrier discharge, is used to detect both minor and trace components (free fatty acids, phenolics and volatiles) in raw untreated olive oil. The method allows the measurement of free fatty acids (the main quality control parameter used to grade olive oil according to quality classes), selected bioactive phenolic compounds, and volatiles. The advantages and limitations of the direct analysis of extremely complex mixtures by the ambient ionization/tandem mass spectrometry combination are discussed and illustrated. The data presage the possible large-scale application of direct mass spectrometric analysis methods in the characterization of olive oil and other foodstuffs.


Subject(s)
Plant Oils/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Cold Temperature , Olive Oil
20.
Anal Chem ; 80(23): 9097-104, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19551980

ABSTRACT

A low-temperature plasma (LTP) probe has been developed for ambient desorption ionization. An ac electric field is used to induce a dielectric barrier discharge through use of a specially designed electrode configuration. The low-temperature plasma is extracted from the probe where it interacts directly with the sample being analyzed, desorbing and ionizing surface molecules in the ambient environment. This allows experiments to be performed without damage to the sample or underlying substrate and, in the case of biological analysis on skin surfaces, without electrical shock or perceptible heating. Positive or negative ions are produced from a wide range of chemical compounds in the pure stateand as mixtures in the gaseous, solution, or condensed phases, using He, Ar, N2, or ambient air as the discharge gas. Limited fragmentation occurs, although it is greater in the cases of the molecular than the atomic discharge gases. The effectiveness of the LTP probe has been demonstrated by recording characteristic mass spectra and tandem mass spectra of samples containing hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) from poly(tetrafluoroethylene) (PTFE) surfaces where limits of detection are as low as 5 pg. Other performance characteristics, when using a commercial ion trap mass spectrometer, include 3-4 orders of magnitude linear dynamic range in favorable cases. Demonstration applications include direct analysis of cocaine from human skin, determination of active ingredients directly in drug tablets, and analysis of toxic and therapeutic compounds in complex biological samples. Ionization of chemicals directly from bulk aqueous solution has been demonstrated, where limits of detection are as low as 1 ppb. Large surface area sampling and control of fragmentation by a simple adjustment of the electrode configuration during operation are other demonstrated characteristics of the method.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Cold Temperature , Dogs , Equipment Design , Explosive Agents/analysis , Gastrointestinal Contents/chemistry , Humans , Nicotine/analysis , Pharmaceutical Preparations/analysis , Skin/chemistry , Stomach/chemistry , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL