ABSTRACT
INTRODUCTION: Combined high sedentary time (ST) and low moderate-to-vigorous physical activity (MVPA) has been associated with adverse cardiovascular events. However, accurately assessing ST and MVPA in older adults is challenging in clinical practice. PURPOSE: To investigate whether step count can identify older adults with unhealthier movement behavior (high ST/low MVPA) and poorer cardiometabolic profile. METHODS: Cross-sectional study (n = 258; 66 ± 5 years). Step count, ST, and MVPA were assessed by hip accelerometry during 7 days. The cardiometabolic profile was assessed using a continuous metabolic syndrome score (cMetS), including blood pressure, HDL-cholesterol, triglycerides, fasting glucose, and waist circumference. Receiving operating curve analysis was used to test the performance of step count in identifying older adults with unhealthier movement behavior (highest tertile of ST/lowest tertile of MVPA). Healthier movement behavior was defined as lowest tertile of ST/highest tertile of MVPA, with neutral representing the remaining combinations of ST/MVPA. RESULTS: A total of 40 participants (15.5%) were identified with unhealthier movement behavior (ST ≥ 11.4 h/day and MVPA ≤ 10 min/day). They spent ~73% and 0.4% of waking hours in ST and MVPA, respectively. Step count identified those with unhealthier movement behavior (area under the curve 0.892, 0.850-0.934; cutoff: ≤5263 steps/day; sensitivity/specificity: 83%/81%). This group showed a higher cMetS compared with neutral (ß = .25, p = .028) and healthier movement behavior groups (ß = .41, p = .008). CONCLUSION: Daily step count appears to be a practical, simple metric for identifying community-dwelling older adults with concomitant high ST and low MVPA, indicative of unhealthier movement behavior, who have a poorer cardiometabolic profile.
Subject(s)
Exercise , Sedentary Behavior , Humans , Aged , Male , Female , Cross-Sectional Studies , Middle Aged , Accelerometry/methodsABSTRACT
The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.
Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Tobamovirus , Humans , Caribbean Region , Water , SorbitolABSTRACT
A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, ß = 0.23) and population synchrony (ß = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (ß = 0.73) to secondary consumers (ß = 0.54), to primary consumers (ß = 0.30) to producers (ß = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.
Subject(s)
Ecosystem , Food Chain , Biodiversity , Fresh Water , Time FactorsABSTRACT
BACKGROUND: Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel-mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS: The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS: Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.
Subject(s)
Disseminated Intravascular Coagulation , Endotoxemia , Sepsis , TRPM Cation Channels , Animals , Rats , Intercellular Adhesion Molecule-1 , P-Selectin , Endothelial Cells , Calcium , von Willebrand Factor , EndotoxinsABSTRACT
Propolis is a resinous substance collected by bees (Apis mellifera). It is used for its biological properties. This natural product is available as a safe therapeutic option. Herein, we report the antiviral effects of brown propolis extract from Mexico and green and red propolis extracts from Brazil, as well as their phenolic compounds (quercetin, caffeic acid, and rutin) in preventing infection of MRC-5 cells by HCoV-229E. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. All samples studied showed antiviral activity. Green and brown propolis extracts, and quercetin exhibited the best EC50 values with values of 19.080, 11.240, and 77.208 µg/mL against HCoV-229E, respectively, and with TC50 of 62.19, 29.192, and 298 µg/mL on MRC-5 cells, respectively. These results are the first in vitro study of the effects of propolis on HCoV-229E and provide the basis for the development of natural formulations against other coronavirus strains.
Subject(s)
Coronavirus 229E, Human , Propolis , Humans , Animals , Propolis/pharmacology , Brazil , Quercetin/pharmacology , Mexico , Phenols/pharmacology , Antiviral Agents/pharmacologyABSTRACT
Germicidal ultraviolet (UV) devices have been widely used for pathogen disinfection in water, air, and on food and surfaces. Emerging UV technologies, like the krypton chloride (KrCl*) excimer emitting at 222 nm, are rapidly gaining popularity due to their minimal adverse effects on skin and eyes compared with conventional UV lamps emitting at 254 nm, opening opportunities for UV disinfection in occupied public spaces. In this study, inactivation of seven bacteria and five viruses, including waterborne, foodborne and respiratory pathogens, was determined in a thin-film aqueous solution using a filtered KrCl* excimer emitting primarily at 222 nm. Our results show that the KrCl* excimer can effectively inactivate all tested bacteria and viruses, with most microorganisms achieving more than 4-log (99.99%) reduction with a UV dose of 10 mJ cm-2 . Compared with conventional UV lamps, the KrCl* excimer lamp exhibited better disinfection performance for viruses but was slightly less effective for bacteria. The relationships between UV sensitivities at 222 and 254 nm for bacteria and viruses were evaluated using regression analysis, resulting in factors that could be used to estimate the KrCl* excimer disinfection performance from well-documented UV kinetics using conventional 254 nm UV lamps. This study provides fundamental information for pathogen disinfection when employing KrCl* excimers.
Subject(s)
Bacteria , Disinfection , Disinfection/methods , Bacteria/radiation effects , Water , Ultraviolet Rays , KryptonABSTRACT
BACKGROUND: Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS: The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS: Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.
Subject(s)
Animals , Rats , Sepsis , Endotoxemia , Disseminated Intravascular Coagulation , TRPM Cation Channels , von Willebrand Factor , Calcium , Intercellular Adhesion Molecule-1 , P-Selectin , Endothelial Cells , EndotoxinsSubject(s)
Anesthesia, Conduction , Arthroplasty, Replacement, Hip , Nerve Block , Orthopedic Surgeons , Humans , Pain , United StatesABSTRACT
BACKGROUND: Neurofilament Light (NfL) chain levels in both cerebrospinal fluid (CSF) and serum have been correlated with the reduction of axonal damage in multiple sclerosis (MS) patients treated with Natalizumab (NTZ). However, little is known about the function of plasmacytoid cells in NTZ-treated MS patients. OBJECTIVE: To evaluate CSF NfL, serum levels of soluble-HLA-G (sHLA-G), and eventual tolerogenic behavior of plasmacytoid dendritic cells (pDCs) in MS patients during NTZ treatment. METHODS: CSF NfL and serum sHLA-G levels were measured using an ELISA assay, while pDCs (BDCA-2+) were accessed through flow cytometry analyses. RESULTS: CSF levels of NfL were significantly reduced during NTZ treatment, while the serum levels of sHLA-G were increased. Moreover, NTZ treatment enhanced tolerogenic (HLA-G+, CD274+, and HLA-DR+) molecules and migratory (CCR7+) functions of pDCs in the peripheral blood. CONCLUSION: These findings suggest that NTZ stimulates the production of molecules with immunoregulatory function such as HLA-G and CD274 programmed death-ligand 1 (PD-L1) which may contribute to the reduction of axonal damage represented by the decrease of NfL levels in patients with MS.
ABSTRACT
The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater has been reported as a result of fecal shedding of infected individuals. In this study, the occurrence of SARS-CoV-2 RNA was explored in primary-treated wastewater from two municipal wastewater treatment plants in Quintana Roo, Mexico, along with groundwater from sinkholes, a household well, and submarine groundwater discharges. Physicochemical variables were obtained in situ, and coliphage densities were determined. Three virus concentration methods based on adsorption-elution and sequential filtration were used followed by RNA isolation. Quantification of SARS-CoV-2 was done by RT-qPCR using the CDC 2020 assay, 2019-nCoV_N1 and 2019-nCoV_N2. The Pepper mild mottle virus, one of the most abundant RNA viruses in wastewater was quantified by RT-qPCR and compared to SARS-CoV-2 concentrations. The use of three combined virus concentration methods together with two qPCR assays allowed the detection of SARS-CoV-2 RNA in 58% of the wastewater samples analyzed, whereas none of the groundwater samples were positive for SARS-CoV-2 RNA. Concentrations of SARS-CoV-2 in wastewater were from 1.8 × 103 to 7.5 × 103 genome copies per liter (GC l-1), using the N1 RT-qPCR assay, and from 2.4 × 102 to 5.9 × 103 GC l-1 using the N2 RT-qPCR assay. Based on PMMoV prevalence detected in all wastewater and groundwater samples tested, the three viral concentration methods used could be successfully applied for SARS-CoV-2 RNA detection in further studies. This study represents the first detection of SARS-CoV-2 RNA in wastewater in southeast Mexico and provides a baseline for developing a wastewater-based epidemiology approach in the area.
Subject(s)
COVID-19 , Groundwater , Environmental Monitoring , Humans , Mexico , RNA, Viral/genetics , SARS-CoV-2 , WastewaterABSTRACT
The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is an important pest of commercial cotton across the Americas. In the United States, eradication of this species is complicated by re-infestations of areas where eradication has been previously successful and by the existence of morphologically similar variants that can confound identification efforts. To date, no study has applied a high-throughput sequencing approach to better understand the population genetic structure of the boll weevil. Furthermore, only a single study has investigated genetic relationships between populations in North and South America. We used double digest restriction site-associated DNA sequencing (ddRADseq) to resolve the population genomic structure of the boll weevil in the southern United States, northern Mexico, and Argentina. Additionally, we assembled the first complete mitochondrial genome for this species and generated a preliminary whole genome assembly, both of which were used to improve the identification of informative loci. Downstream analyses revealed two main lineages-one consisting of populations found geographically west of the Sierra Madre Occidental mountain range and the second consisting of populations found to the east-were revealed, and both were sub-structured. Population geographic structure was consistent with the isolation by distance model, indicating that geogrpahic distance is likely a primary mechanism driving divergence in this species. Boll weevil populations from Argentina were found to be more closely related to the eastern lineage, suggesting a recent colonization of South America by the eastern lineage, but additional sampling across Mexico, Central America and South America is needed to further clarify their origin. Finally, we uncovered an instance of population turnover or replacement, highlighting the temporal instability of population structure.
ABSTRACT
BACKGROUND: The prevalence of total joint arthroplasty (TJA) in the United States has drawn the attention of health care stakeholders. The payers have also used a variety of strategies to regulate the medical necessity of these procedures. The purpose of this study was to examine the level of evidence of the coverage policies being used by commercial payers in the United States. METHODS: The references of the coverage policies of four commercial insurance companies were reviewed for type of document, level of evidence, applicability to a TJA population, and success of nonoperative treatment in patients with severe degenerative joint disease. RESULTS: 282 documents were reviewed. 45.8% were primary journal articles, 14.2% were level I or II, 41.2% were applicable to patients who were candidates for TJA, and 9.9% discussed the success of nonoperative treatment in patients who would be candidates for TJA. CONCLUSION: Most of the references cited by commercial payers are of a lower level of scientific evidence and not applicable to patients considered to be candidates for TJA. This is relatively uniform across the reviewed payers. The dearth of high-quality literature cited by commercial payers reflects the lack of evidence and difficulty in conducting high level studies on the outcomes of nonoperative versus operative treatment for patients with severe, symptomatic osteoarthritis. Patients, surgeons, and payers would all benefit from such studies and we encourage professional societies to strive toward that end through multicenter collaboration.
Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Humans , Policy , United StatesABSTRACT
The C4 crop maize (Zea mays) is the most widely grown cereal crop worldwide and is an essential feedstock for food and bioenergy. Improving maize yield is important to achieve food security and agricultural sustainability in the 21st century. One potential means to improve crop productivity is to enhance photosynthesis. ictB, a membrane protein that is highly conserved across cyanobacteria, has been shown to improve photosynthesis, and often biomass, when introduced into diverse C3 plant species. Here, ictB from Synechococcus sp. strain PCC 7942 was inserted into maize using Agrobacterium-mediated transformation. In three controlled-environment experiments, ictB insertion increased leaf starch and sucrose content by up to 25% relative to controls. Experimental field trials in four growing seasons, spanning the Midwestern United States (Summers 2018 & 2019) and Argentina (Winter 2018 & 2019), showed an average of 3.49% grain yield improvement, by as much as 5.4% in a given season and up to 9.4% at certain trial locations. A subset of field trial locations was used to test for modification of ear traits and ФPSII, a proxy for photosynthesis. Results suggested that yield gain in transgenics could be associated with increased ФPSII, and the production of longer, thinner ears with more kernels. ictB localized primarily to the microsome fraction of leaf bundle-sheath cells, but not to chloroplasts. Extramembrane domains of ictB interacted in vitro with proteins involved in photosynthesis and carbohydrate metabolism. To our knowledge, this is the first published evidence of ictB insertion into a species using C4 photosynthesis and the largest-scale demonstration of grain yield enhancement from ictB insertion in planta. Results show that ictB is a valuable yield gene in the economically important crop maize, and are an important proof of concept that transgenic manipulation of photosynthesis can be used to create economically viable crop improvement traits.
Subject(s)
Cyanobacteria/metabolism , Photosynthesis/genetics , Zea mays/metabolism , Argentina , Biomass , Carbohydrate Metabolism/genetics , Carbohydrates/biosynthesis , Carbohydrates/genetics , Carbon Cycle , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Crop Production , Cyanobacteria/genetics , Membrane Proteins/genetics , Midwestern United States , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Zea mays/genetics , Zea mays/growth & developmentABSTRACT
The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a major pest of cotton (Gossypium spp. (Malvales: Malvaceae)) in Mexico, South America, and South Texas in the United States. The ability of the boll weevil to survive extended cotton-free periods has been key to its persistence as a pest despite intensive control efforts. However, the mechanism facilitating survival has been subject to debate. Whereas adult diapause has long been considered the principal survival mechanism, some authors have characterized the dormancy as a quiescence. We induced dormancy in the weevil and examined whether food type, enforced starvation, or induced flight influenced termination of the dormancy. Providing dormant adult weevils a diet favoring reproduction for 7-14 d prompted a modest termination response in female weevils and virtually no response in males. Some weevils starved ≥21 d resumed reproduction after exposure to a favorable diet, but most weevils remained dormant. Induced flight followed by exposure to a favorable diet prompted >50% of the weevils to terminate the dormancy. Patterns of feeding and oviposition were also useful in interpreting the termination response. These results indicate that the dormancy exhibited by the weevil is a diapause of variable intensity rather than a quiescence. A conceptual model recognizing population heterogeneity in diapause induction and intensity is consistent with reports of host-free survival and accommodates perceived differences in boll weevil ecology among temperate, subtropical, and tropical regions. This model provides a framework that will be valuable to research, management, and eradication efforts in the tropics and subtropics.
Subject(s)
Coleoptera , Diapause, Insect , Diapause , Weevils , Animals , Female , Gossypium , Male , Mexico , South America , TexasABSTRACT
Banana production is seriously threatened by Fusarium wilt (FW), a disease caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). In the mid-twentieth century FW, also known as "Panama disease", wiped out the Gros Michel banana industry in Central America. The devastation caused by Foc race 1 was mitigated by a shift to resistant Cavendish cultivars, which are currently the source of 99% of banana exports. However, a new strain of Foc, the tropical race 4 (TR4), attacks Cavendish clones and a diverse range of other banana varieties. Foc TR4 has been restricted to East and parts of Southeast Asia for more than 20 years, but since 2010 the disease has spread westward into five additional countries in Southeast and South Asia (Vietnam, Laos, Myanmar, India, and Pakistan) and at the transcontinental level into the Middle East (Oman, Jordan, Lebanon, and Israel) and Africa (Mozambique). The spread of Foc TR4 is of great concern due to the limited knowledge about key aspects of disease epidemiology and the lack of effective management models, including resistant varieties and soil management approaches. In this review we summarize the current knowledge on the epidemiology of FW of banana, highlighting knowledge gaps in pathogen survival and dispersal, factors driving disease intensity, soil and plant microbiome and the dynamics of the disease. Comparisons with FW in other crops were also made to indicate possible differences and commonalities. Our current understanding of the role of main biotic and abiotic factors on disease intensity is reviewed, highlighting research needs and futures directions. Finally, a set of practices and their impact on disease intensity are discussed and proposed as an integrative management approach that could eventually be used by a range of users, including plant protection organizations, researchers, extension workers and growers.
Subject(s)
Chronic Pain , Opioid-Related Disorders , Analgesics, Opioid , Humans , Primary Health CareABSTRACT
The Yucatan Peninsula of Mexico hosts a karst aquifer system that is the only source of freshwater for the area; however, it is vulnerable to human-mediated contamination. Pepper mild mottle virus (PMMoV) is one of the most abundant RNA viruses associated with human feces, making it a viable indicator for tracking fecal pollution in aquatic environments, including groundwater. In this study, groundwater samples collected from a karst aquifer from fresh and brackish water locations were analyzed for fecal indicator bacteria, somatic and male F+ specific coliphages, and PMMoV during the rainy and dry seasons. Total coliform bacteria were detected at all sites, whereas Escherichia coli were found at relatively low levels <40 MPN/100 ml. The highest average concentrations of somatic and male F+ specific coliphages were 920 and 330 plaque forming units per 100 ml, respectively, detected in freshwater during the rainy season. PMMoV RNA was detected in 85% of the samples with gene sequences sharing 99-100% of nucleotide identity with PMMoV sequences available in GenBank. Quantification of PMMoV genome copies (GC) by quantitative real-time PCR indicated concentrations ranging from 1.7 × 101 to 1.0 × 104 GC/L, with the highest number of GC detected during the rainy season. No significant correlation was observed between PMMoV occurrence by season or water type (p > 0.05). Physicochemical and indicator bacteria were not correlated with PMMoV concentrations. The abundance and prevalence of PMMoV in the karst aquifer may reflect its environmental persistence and its potential as a fecal indicator in this karst aquifer system.