Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385478

ABSTRACT

Plant-allergenic proteins (PAPs) have the potential to induce allergic reactions in certain individuals. While these proteins are generally innocuous for the majority of people, they can elicit an immune response in those with particular sensitivities. Thus, screening and prioritizing the allergenic potential of plant proteins is indispensable for the development of diagnostic tools, therapeutic interventions or medications to treat allergic reactions. However, investigating the allergenic potential of plant proteins based on experimental methods is costly and labour-intensive. Therefore, we develop StackPAP, a three-layer stacking ensemble framework for accurate large-scale identification of PAPs. In StackPAP, at the first layer, we conducted a comprehensive analysis of an extensive set of feature descriptors. Subsequently, we selected and fused five potential sequence-based feature descriptors, including amphiphilic pseudo-amino acid composition, dipeptide deviation from expected mean, amino acid composition, pseudo amino acid composition and dipeptide composition. Additionally, we applied an efficient genetic algorithm (GA-SAR) to determine informative feature sets. In the second layer, 12 powerful machine learning (ML) methods, in combination with all the informative feature sets, were employed to construct a pool of base classifiers. Finally, 13 potential base classifiers were selected using the GA-SAR method and combined to develop the final meta-classifier. Our experimental results revealed the promising prediction performance of StackPAP, with an accuracy, Matthew's correlation coefficient and AUC of 0.984, 0.969 and 0.993, respectively, as judged by the independent test dataset. In conclusion, both cross-validation and independent test results indicated the superior performance of StackPAP compared with several ML-based classifiers. To accelerate the identification of the allergenicity of plant proteins, we developed a user-friendly web server for StackPAP (https://pmlabqsar.pythonanywhere.com/StackPAP). We anticipate that StackPAP will be an efficient and useful tool for rapidly screening PAPs from a vast number of plant proteins.Communicated by Ramaswamy H. Sarma.

2.
BMC Bioinformatics ; 24(1): 356, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735626

ABSTRACT

BACKGROUND: Tyrosinase is an enzyme involved in melanin production in the skin. Several hyperpigmentation disorders involve the overproduction of melanin and instability of tyrosinase activity resulting in darker, discolored patches on the skin. Therefore, discovering tyrosinase inhibitory peptides (TIPs) is of great significance for basic research and clinical treatments. However, the identification of TIPs using experimental methods is generally cost-ineffective and time-consuming. RESULTS: Herein, a stacked ensemble learning approach, called TIPred, is proposed for the accurate and quick identification of TIPs by using sequence information. TIPred explored a comprehensive set of various baseline models derived from well-known machine learning (ML) algorithms and heterogeneous feature encoding schemes from multiple perspectives, such as chemical structure properties, physicochemical properties, and composition information. Subsequently, 130 baseline models were trained and optimized to create new probabilistic features. Finally, the feature selection approach was utilized to determine the optimal feature vector for developing TIPred. Both tenfold cross-validation and independent test methods were employed to assess the predictive capability of TIPred by using the stacking strategy. Experimental results showed that TIPred significantly outperformed the state-of-the-art method in terms of the independent test, with an accuracy of 0.923, MCC of 0.757 and an AUC of 0.977. CONCLUSIONS: The proposed TIPred approach could be a valuable tool for rapidly discovering novel TIPs and effectively identifying potential TIP candidates for follow-up experimental validation. Moreover, an online webserver of TIPred is publicly available at http://pmlabstack.pythonanywhere.com/TIPred .


Subject(s)
Melanins , Monophenol Monooxygenase , Algorithms , Machine Learning , Peptides
3.
PLoS One ; 18(8): e0290538, 2023.
Article in English | MEDLINE | ID: mdl-37624802

ABSTRACT

Hepatitis C virus (HCV) infection is a concerning health issue that causes chronic liver diseases. Despite many successful therapeutic outcomes, no effective HCV vaccines are currently available. Focusing on T cell activity, the primary effector for HCV clearance, T cell epitopes of HCV (TCE-HCV) are considered promising elements to accelerate HCV vaccine efficacy. Thus, accurate and rapid identification of TCE-HCVs is recommended to obtain more efficient therapy for chronic HCV infection. In this study, a novel sequence-based stacked approach, termed TROLLOPE, is proposed to accurately identify TCE-HCVs from sequence information. Specifically, we employed 12 different sequence-based feature descriptors from heterogeneous perspectives, such as physicochemical properties, composition-transition-distribution information and composition information. These descriptors were used in cooperation with 12 popular machine learning (ML) algorithms to create 144 base-classifiers. To maximize the utility of these base-classifiers, we used a feature selection strategy to determine a collection of potential base-classifiers and integrated them to develop the meta-classifier. Comprehensive experiments based on both cross-validation and independent tests demonstrated the superior predictive performance of TROLLOPE compared with conventional ML classifiers, with cross-validation and independent test accuracies of 0.745 and 0.747, respectively. Finally, a user-friendly online web server of TROLLOPE (http://pmlabqsar.pythonanywhere.com/TROLLOPE) has been developed to serve research efforts in the large-scale identification of potential TCE-HCVs for follow-up experimental verification.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepacivirus/genetics , Epitopes, T-Lymphocyte , Algorithms
4.
BMC Bioinformatics ; 24(1): 301, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507654

ABSTRACT

BACKGROUND: The identification of tumor T cell antigens (TTCAs) is crucial for providing insights into their functional mechanisms and utilizing their potential in anticancer vaccines development. In this context, TTCAs are highly promising. Meanwhile, experimental technologies for discovering and characterizing new TTCAs are expensive and time-consuming. Although many machine learning (ML)-based models have been proposed for identifying new TTCAs, there is still a need to develop a robust model that can achieve higher rates of accuracy and precision. RESULTS: In this study, we propose a new stacking ensemble learning-based framework, termed StackTTCA, for accurate and large-scale identification of TTCAs. Firstly, we constructed 156 different baseline models by using 12 different feature encoding schemes and 13 popular ML algorithms. Secondly, these baseline models were trained and employed to create a new probabilistic feature vector. Finally, the optimal probabilistic feature vector was determined based the feature selection strategy and then used for the construction of our stacked model. Comparative benchmarking experiments indicated that StackTTCA clearly outperformed several ML classifiers and the existing methods in terms of the independent test, with an accuracy of 0.932 and Matthew's correlation coefficient of 0.866. CONCLUSIONS: In summary, the proposed stacking ensemble learning-based framework of StackTTCA could help to precisely and rapidly identify true TTCAs for follow-up experimental verification. In addition, we developed an online web server ( http://2pmlab.camt.cmu.ac.th/StackTTCA ) to maximize user convenience for high-throughput screening of novel TTCAs.


Subject(s)
Computational Biology , Neoplasms , Humans , Computational Biology/methods , Algorithms , Machine Learning , T-Lymphocytes
5.
Leg Med (Tokyo) ; 64: 102280, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37307774

ABSTRACT

In both forensic and archaeological domains, the discovery of incomplete human remains is a frequent occurrence. Nevertheless, the estimation of biological profiles from such remains presents a challenge due to the absence of crucial skeletal elements, such as the skull and pelvis. This study aimed to assess the utility of the proximal femur in the forensic identification process by creating a web application for osteometric analysis of the proximal femur. The aim was to determine the sex and stature of an individual from radiographs of the left anteroposterior femur. To accomplish this, an automated method was developed for acquiring linear measurements from radiographic images of the proximal femur using Python tools. The application of Hough techniques and Canny edge detection was utilized to generate linear femoral dimensions from radiographs. A total of 354 left femora were radiographed and measured by the algorithm. The sex classification model employed in this study was the Naïve Bayes algorithm (accuracy = 91.2 %). Results indicated that Gaussian process regression (GPR) was the most effective method for estimating stature (mean error = 4.68 cm, SD = 3.93 cm). The proposed web application holds the potential to serve as a valuable asset in the realm of forensic investigations in Thailand, particularly in the estimation of biological profiles from fragmentary skeletal remains.


Subject(s)
Forensic Anthropology , Southeast Asian People , Humans , Bayes Theorem , Body Height , Femur/diagnostic imaging , Femur/anatomy & histology , Forensic Anthropology/methods , Thailand , Sex Factors
6.
J Cheminform ; 15(1): 50, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149650

ABSTRACT

Drug resistance represents a major obstacle to therapeutic innovations and is a prevalent feature in prostate cancer (PCa). Androgen receptors (ARs) are the hallmark therapeutic target for prostate cancer modulation and AR antagonists have achieved great success. However, rapid emergence of resistance contributing to PCa progression is the ultimate burden of their long-term usage. Hence, the discovery and development of AR antagonists with capability to combat the resistance, remains an avenue for further exploration. Therefore, this study proposes a novel deep learning (DL)-based hybrid framework, named DeepAR, to accurately and rapidly identify AR antagonists by using only the SMILES notation. Specifically, DeepAR is capable of extracting and learning the key information embedded in AR antagonists. Firstly, we established a benchmark dataset by collecting active and inactive compounds against AR from the ChEMBL database. Based on this dataset, we developed and optimized a collection of baseline models by using a comprehensive set of well-known molecular descriptors and machine learning algorithms. Then, these baseline models were utilized for creating probabilistic features. Finally, these probabilistic features were combined and used for the construction of a meta-model based on a one-dimensional convolutional neural network. Experimental results indicated that DeepAR is a more accurate and stable approach for identifying AR antagonists in terms of the independent test dataset, by achieving an accuracy of 0.911 and MCC of 0.823. In addition, our proposed framework is able to provide feature importance information by leveraging a popular computational approach, named SHapley Additive exPlanations (SHAP). In the meanwhile, the characterization and analysis of potential AR antagonist candidates were achieved through the SHAP waterfall plot and molecular docking. The analysis inferred that N-heterocyclic moieties, halogenated substituents, and a cyano functional group were significant determinants of potential AR antagonists. Lastly, we implemented an online web server by using DeepAR (at http://pmlabstack.pythonanywhere.com/DeepAR ). We anticipate that DeepAR could be a useful computational tool for community-wide facilitation of AR candidates from a large number of uncharacterized compounds.

7.
Int J Biol Macromol ; 238: 124228, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36996953

ABSTRACT

T-cells recognize antigenic epitopes present on major histocompatibility complex (MHC) molecules, triggering an adaptive immune response in the host. T-cell epitope (TCE) identification is challenging because of the extensive number of undetermined proteins found in eukaryotic pathogens, as well as MHC polymorphisms. In addition, conventional experimental approaches for TCE identification are time-consuming and expensive. Thus, computational approaches that can accurately and rapidly identify CD8+ T-cell epitopes (TCEs) of eukaryotic pathogens based solely on sequence information may facilitate the discovery of novel CD8+ TCEs in a cost-effective manner. Here, Pretoria (Predictor of CD8+ TCEs of eukaryotic pathogens) is proposed as the first stack-based approach for accurate and large-scale identification of CD8+ TCEs of eukaryotic pathogens. In particular, Pretoria enabled the extraction and exploration of crucial information embedded in CD8+ TCEs by employing a comprehensive set of 12 well-known feature descriptors extracted from multiple groups, including physicochemical properties, composition-transition-distribution, pseudo-amino acid composition, and amino acid composition. These feature descriptors were then utilized to construct a pool of 144 different machine learning (ML)-based classifiers based on 12 popular ML algorithms. Finally, the feature selection method was used to effectively determine the important ML classifiers for the construction of our stacked model. The experimental results indicated that Pretoria is an accurate and effective computational approach for CD8+ TCE prediction; it was superior to several conventional ML classifiers and the existing method in terms of the independent test, with an accuracy of 0.866, MCC of 0.732, and AUC of 0.921. Additionally, to maximize user convenience for high-throughput identification of CD8+ TCEs of eukaryotic pathogens, a user-friendly web server of Pretoria (http://pmlabstack.pythonanywhere.com/Pretoria) was developed and made freely available.


Subject(s)
Epitopes, T-Lymphocyte , Eukaryota , South Africa , CD8-Positive T-Lymphocytes , Algorithms , Proteins , Amino Acids/chemistry , Computational Biology
8.
Comput Biol Med ; 158: 106784, 2023 05.
Article in English | MEDLINE | ID: mdl-36989748

ABSTRACT

Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.


Subject(s)
Peptides , Quorum Sensing , Propensity Score , Peptides/chemistry , Dipeptides/chemistry , Bacteria
9.
Comput Biol Med ; 152: 106368, 2023 01.
Article in English | MEDLINE | ID: mdl-36481763

ABSTRACT

Despite the arsenal of existing cancer therapies, the ongoing recurrence and new cases of cancer pose a serious health concern that necessitates the development of new and effective treatments. Cancer immunotherapy, which uses the body's immune system to combat cancer, is a promising treatment option. As a result, in silico methods for identifying and characterizing tumor T cell antigens (TTCAs) would be useful for better understanding their functional mechanisms. Although few computational methods for TTCA identification have been developed, their lack of model interpretability is a major drawback. Thus, developing computational methods for the effective identification and characterization of TTCAs is a critical endeavor. PSRTTCA, a new machine learning (ML)-based approach for improving the identification and characterization of TTCAs based on their primary sequences, is proposed in this study. Specifically, we introduce a new propensity score representation learning algorithm that allows one to generate various sets of propensity scores of amino acids, dipeptides, and g-gap dipeptides to be TTCAs. To enhance the predictive performance, optimal sets of variant propensity scores were determined and fed into the final meta-predictor (PSRTTCA). Benchmarking results revealed that PSRTTCA was a more precise and promising tool for the identification and characterization of TTCAs than conventional ML classifiers and existing methods. Furthermore, PSR-derived propensities of amino acids in becoming TTCAs are used to reveal the relationship between TTCAs and their informative physicochemical properties in order to provide insights into TTCA characteristics. Finally, a user-friendly online computational platform of PSRTTCA is publicly available at http://pmlabstack.pythonanywhere.com/PSRTTCA. The PSRTTCA predictor is anticipated to facilitate community-wide efforts in accelerating the discovery of novel TTCAs for cancer immunotherapy and other clinical applications.


Subject(s)
Amino Acids , Neoplasms , Humans , Propensity Score , Amino Acids/chemistry , Algorithms , Neoplasms/therapy , Dipeptides/chemistry , Dipeptides/metabolism , T-Lymphocytes/metabolism , Computational Biology/methods
10.
ACS Omega ; 7(45): 41082-41095, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406571

ABSTRACT

Antimalarial peptides (AMAPs) varying in length, amino acid composition, charge, conformational structure, hydrophobicity, and amphipathicity reflect their diversity in antimalarial mechanisms. Due to the worldwide major health problem concerning antimicrobial resistance, these peptides possess great therapeutic value owing to their low incidences of drug resistance as compared to conventional antibiotics. Although well-known experimental methods are able to precisely determine the antimalarial activity of peptides, these methods are still time-consuming and costly. Thus, machine learning (ML)-based methods that are capable of identifying AMAPs rapidly by using only sequence information would be beneficial for the high-throughput identification of AMAPs. In this study, we propose the first computational model (termed iAMAP-SCM) for the large-scale identification and characterization of peptides with antimalarial activity by using only sequence information. Specifically, we employed an interpretable scoring card method (SCM) to develop iAMAP-SCM and estimate propensities of 20 amino acids and 400 dipeptides to be AMAPs in a supervised manner. Experimental results showed that iAMAP-SCM could achieve a maximum accuracy and Matthew's coefficient correlation of 0.957 and 0.834, respectively, on the independent test dataset. In addition, SCM-derived propensities of 20 amino acids and selected physicochemical properties were used to provide an understanding of the functional mechanisms of AMAPs. Finally, a user-friendly online computational platform of iAMAP-SCM is publicly available at http://pmlabstack.pythonanywhere.com/iAMAP-SCM. The iAMAP-SCM predictor is anticipated to assist experimental scientists in the high-throughput identification of potential AMAP candidates for the treatment of malaria and other clinical applications.

11.
Sensors (Basel) ; 22(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36433385

ABSTRACT

Recent advancement in Deep Learning-based Convolutional Neural Networks (D-CNNs) has led research to improve the efficiency and performance of barcode recognition in Supply Chain Management (SCM). D-CNNs required real-world images embedded with ground truth data, which is often not readily available in the case of SCM barcode recognition. This study introduces two invented barcode datasets: InventBar and ParcelBar. The datasets contain labeled barcode images with 527 consumer goods and 844 post boxes in the indoor environment. To explore the influential capability of the datasets that affect recognition process, five existing D-CNN algorithms were applied and compared over a set of recently available barcode datasets. To confirm the model's performance and accuracy, runtime and Mean Average Precision (mAP) were examined based on different IoU thresholds and image transformation settings. The results show that YOLO v5 works best for the ParcelBar in terms of speed and accuracy. The situation is different for the InventBar since Faster R-CNN could allow the model to learn faster with a small drop in accuracy. It is proven that the proposed datasets can be practically utilized for the mainstream D-CNN frameworks. Both are available for developing barcode recognition models and positively affect comparative studies.


Subject(s)
Benchmarking , Neural Networks, Computer , Algorithms , Data Collection
12.
J Clin Med ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36362531

ABSTRACT

Objectives: To develop a machine learning (ML)-based framework using red blood cell (RBC) parameters for the prediction of the α+-thalassemia trait (α+-thal trait) and to compare the diagnostic performance with a conventional method using a single RBC parameter or a combination of RBC parameters. Methods: A retrospective study was conducted on possible couples at risk for fetus with hemoglobin H (Hb H disease). Subjects with molecularly confirmed normal status (not thalassemia), α+-thal trait, and two-allele α-thalassemia mutation were included. Clinical parameters (age and gender) and RBC parameters (Hb, Hct, MCV, MCH, MCHC, RDW, and RBC count) obtained from their antenatal thalassemia screen were retrieved and analyzed using a machine learning (ML)-based framework and a conventional method. The performance of α+-thal trait prediction was evaluated. Results: In total, 594 cases (female/male: 330/264, mean age: 29.7 ± 6.6 years) were included in the analysis. There were 229 normal controls, 160 cases with the α+-thalassemia trait, and 205 cases in the two-allele α-thalassemia mutation category, respectively. The ML-derived model improved the diagnostic performance, giving a sensitivity of 80% and specificity of 81%. The experimental results indicated that DeepThal achieved a better performance compared with other ML-based methods in terms of the independent test dataset, with an accuracy of 80.77%, sensitivity of 70.59%, and the Matthews correlation coefficient (MCC) of 0.608. Of all the red blood cell parameters, MCH < 28.95 pg as a single parameter had the highest performance in predicting the α+-thal trait with the AUC of 0.857 and 95% CI of 0.816−0.899. The combination model derived from the binary logistic regression analysis exhibited improved performance with the AUC of 0.868 and 95% CI of 0.830−0.906, giving a sensitivity of 80.1% and specificity of 75.1%. Conclusions: The performance of DeepThal in terms of the independent test dataset is sufficient to demonstrate that DeepThal is capable of accurately predicting the α+-thal trait. It is anticipated that DeepThal will be a useful tool for the scientific community in the large-scale prediction of the α+-thal trait.

13.
J Comput Aided Mol Des ; 36(11): 781-796, 2022 11.
Article in English | MEDLINE | ID: mdl-36284036

ABSTRACT

The blood-brain barrier (BBB) is the primary barrier with a highly selective semipermeable border between blood vascular endothelial cells and the central nervous system. Since BBB can prevent drugs circulating in the blood from crossing into the interstitial fluid of the brain where neurons reside, many researchers are working hard on developing drug delivery systems to penetrate the BBB which currently poses a challenge. Thus, blood-brain barrier penetrating peptides (B3PPs) are an alternative neurotherapeutic for brain-related disorder since they can facilitate drug delivery into the brain. In the meanwhile, developing computational methods that are effective for both the identification and characterization of B3PPs in a cost-effective manner plays an important role for basic reach and in the pharmaceutical industry. Even though few computational methods for B3PP identification have been developed, their performance might fail in terms of generalization ability and interpretability. In this study, a novel and efficient scoring card method-based predictor (termed SCMB3PP) is presented for improving B3PP identification and characterization. To overcome the limitation of black-box computational approaches, the SCMB3PP predictor can automatically estimate amino acid and dipeptide propensities to be B3PPs. Both cross-validation and independent tests indicate that SCMB3PP can achieve impressive performance and outperform various popular machine learning-based methods and the existing methods on multiple independent test datasets. Furthermore, SCMB3PP-derived amino acid propensities were utilized to identify informative biophysical and biochemical properties for characterizing B3PPs. Finally, an online user-friendly web server ( http://pmlabstack.pythonanywhere.com/SCMB3PP ) is established to identify novel and potential B3PP cost-effectively. This novel computational approach is anticipated to facilitate the large-scale identification of high potential B3PP candidates for follow-up experimental validation.


Subject(s)
Blood-Brain Barrier , Dipeptides , Dipeptides/chemistry , Dipeptides/metabolism , Propensity Score , Endothelial Cells , Peptides/metabolism , Amino Acids/chemistry
14.
iScience ; 25(9): 104883, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36046193

ABSTRACT

Discovery of potential drugs requires rapid and precise identification of drug targets. Although traditional experimental methodologies can accurately identify drug targets, they are time-consuming and inappropriate for high-throughput screening. Computational approaches based on machine learning (ML) algorithms can expedite the prediction of druggable proteins; however, the performance of the existing computational methods remains unsatisfactory. This study proposes a computational tool, SPIDER, to enhance the accurate prediction of druggable proteins. SPIDER employs various feature descriptors pertaining to several aspects, including physicochemical properties, compositional information, and composition-transition-distribution information, coupled with well-known ML algorithms to facilitate the construction of the final meta-predictor. The experimental results showed that SPIDER enabled more precise and robust prediction of druggable proteins than the baseline models and current existing methods in terms of the independent test dataset. An online web server was established and made freely available online.

15.
Sci Rep ; 12(1): 16435, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180453

ABSTRACT

Progesterone receptors (PRs) are implicated in various cancers since their presence/absence can determine clinical outcomes. The overstimulation of progesterone can facilitate oncogenesis and thus, its modulation through PR inhibition is urgently needed. To address this issue, a novel stacked ensemble learning approach (termed StackPR) is presented for fast, accurate, and large-scale identification of PR antagonists using only SMILES notation without the need for 3D structural information. We employed six popular machine learning (ML) algorithms (i.e., logistic regression, partial least squares, k-nearest neighbor, support vector machine, extremely randomized trees, and random forest) coupled with twelve conventional molecular descriptors to create 72 baseline models. Then, a genetic algorithm in conjunction with the self-assessment-report approach was utilized to determine m out of the 72 baseline models as means of developing the final meta-predictor using the stacking strategy and tenfold cross-validation test. Experimental results on the independent test dataset show that StackPR achieved impressive predictive performance with an accuracy of 0.966 and Matthew's coefficient correlation of 0.925. In addition, analysis based on the SHapley Additive exPlanation algorithm and molecular docking indicates that aliphatic hydrocarbons and nitrogen-containing substructures were the most important features for having PR antagonist activity. Finally, we implemented an online webserver using StackPR, which is freely accessible at http://pmlabstack.pythonanywhere.com/StackPR . StackPR is anticipated to be a powerful computational tool for the large-scale identification of unknown PR antagonist candidates for follow-up experimental validation.


Subject(s)
Progesterone , Receptors, Progesterone , Algorithms , Computational Biology , Molecular Docking Simulation , Nitrogen , Support Vector Machine
16.
ACS Omega ; 7(36): 32653-32664, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36120041

ABSTRACT

Staphylococcus aureus is deemed to be one of the major causes of hospital and community-acquired infections, especially in methicillin-resistant S. aureus (MRSA) strains. Because antimicrobial peptides have captured attention as novel drug candidates due to their rapid and broad-spectrum antimicrobial activity, anti-MRSA peptides have emerged as potential therapeutics for the treatment of bacterial infections. Although experimental approaches can precisely identify anti-MRSA peptides, they are usually cost-ineffective and labor-intensive. Therefore, computational approaches that are able to identify and characterize anti-MRSA peptides by using sequence information are highly desirable. In this study, we present the first computational approach (termed SCMRSA) for identifying and characterizing anti-MRSA peptides by using sequence information without the use of 3D structural information. In SCMRSA, we employed an interpretable scoring card method (SCM) coupled with the estimated propensity scores of 400 dipeptides. Comparative experiments indicated that SCMRSA was more effective and could outperform several machine learning-based classifiers with an accuracy of 0.960 and Matthews correlation coefficient of 0.848 on the independent test data set. In addition, we employed the SCMRSA-derived propensity scores to provide a more in-depth explanation regarding the functional mechanisms of anti-MRSA peptides. Finally, in order to serve community-wide use of the proposed SCMRSA, we established a user-friendly webserver which can be accessed online at http://pmlabstack.pythonanywhere.com/SCMRSA. SCMRSA is anticipated to be an open-source and useful tool for screening and identifying novel anti-MRSA peptides for follow-up experimental studies.

17.
EXCLI J ; 21: 757-771, 2022.
Article in English | MEDLINE | ID: mdl-35949489

ABSTRACT

Nearly all living species comprise of host defense peptides called defensins, that are crucial for innate immunity. These peptides work by activating the immune system which kills the microbes directly or indirectly, thus providing protection to the host. Thus far, numerous preclinical and clinical trials for peptide-based drugs are currently being evaluated. Although, experimental methods can help to precisely identify the defensin peptide family and subfamily, these approaches are often time-consuming and cost-ineffective. On the other hand, machine learning (ML) methods are able to effectively employ protein sequence information without the knowledge of a protein's three-dimensional structure, thus highlighting their predictive ability for the large-scale identification. To date, several ML methods have been developed for the in silico identification of the defensin peptide family and subfamily. Therefore, summarizing the advantages and disadvantages of the existing methods is urgently needed in order to provide useful suggestions for the development and improvement of new computational models for the identification of the defensin peptide family and subfamily. With this goal in mind, we first provide a comprehensive survey on a collection of six state-of-the-art computational approaches for predicting the defensin peptide family and subfamily. Herein, we cover different important aspects, including the dataset quality, feature encoding methods, feature selection schemes, ML algorithms, cross-validation methods and web server availability/usability. Moreover, we provide our thoughts on the limitations of existing methods and future perspectives for improving the prediction performance and model interpretability. The insights and suggestions gained from this review are anticipated to serve as a valuable guidance for researchers for the development of more robust and useful predictors.

18.
EXCLI J ; 21: 554-570, 2022.
Article in English | MEDLINE | ID: mdl-35651661

ABSTRACT

Thermophilic proteins (TPPs) are critical for basic research and in the food industry due to their ability to maintain a thermodynamically stable fold at extremely high temperatures. Thus, the expeditious identification of novel TPPs through computational models from protein sequences is very desirable. Over the last few decades, a number of computational methods, especially machine learning (ML)-based methods, for in silico prediction of TPPs have been developed. Therefore, it is desirable to revisit these methods and summarize their advantages and disadvantages in order to further develop new computational approaches to achieve more accurate and improved prediction of TPPs. With this goal in mind, we comprehensively investigate a large collection of fourteen state-of-the-art TPP predictors in terms of their dataset size, feature encoding schemes, feature selection strategies, ML algorithms, evaluation strategies and web server/software usability. To the best of our knowledge, this article represents the first comprehensive review on the development of ML-based methods for in silico prediction of TPPs. Among these TPP predictors, they can be classified into two groups according to the interpretability of ML algorithms employed (i.e., computational black-box methods and computational white-box methods). In order to perform the comparative analysis, we conducted a comparative study on several currently available TPP predictors based on two benchmark datasets. Finally, we provide future perspectives for the design and development of new computational models for TPP prediction. We hope that this comprehensive review will facilitate researchers in selecting an appropriate TPP predictor that is the most suitable one to deal with their purposes and provide useful perspectives for the development of more effective and accurate TPP predictors.

19.
Comput Biol Med ; 146: 105704, 2022 07.
Article in English | MEDLINE | ID: mdl-35690478

ABSTRACT

Thermophilic proteins (TPPs) are important in the field of protein biochemistry and development of new enzymes. Thus, computational methods must be urgently developed to accurately and rapidly identify TPPs. To date, several computational methods have been developed for TPP identification; however, few limitations in terms of performance and utility remain. In this study, we present a novel computational method, SAPPHIRE, to achieve more accurate identification of TPPs using only sequence information without any need for structural information. We combined twelve different feature encodings representing different perspectives and six popular machine learning algorithms to train 72 baseline models and extract the key information of TPPs. Subsequently, the informative predicted probabilities from the baseline models were mined and selected using a genetic algorithm in conjunction with a self-assessment-report approach. Finally, the final meta-predictor, SAPPHIRE, was built and optimized by applying an optimal feature set. The performance of SAPPHIRE in the 10-fold cross-validation test showed that a superior predictive performance compared with several baseline models could be achieved. Moreover, SAPPHIRE yielded an accuracy of 0.942 and Matthew's coefficient correlation of 0.884, which were 7.68 and 5.12% higher than those of the current existing methods, respectively, as indicated by the independent test. The proposed computational approach is anticipated to facilitate large-scale identification of TPPs and accelerate their applications in the food industry. The codes and datasets are available at https://github.com/plenoi/SAPPHIRE.


Subject(s)
Aluminum Oxide , Computational Biology , Algorithms , Computational Biology/methods , Machine Learning , Proteins/chemistry
20.
Comput Biol Med ; 148: 105700, 2022 09.
Article in English | MEDLINE | ID: mdl-35715261

ABSTRACT

Tumor homing peptides (THPs) play a crucial role in recognizing and specifically binding to cancer cells. Although experimental approaches can facilitate the precise identification of THPs, they are usually time-consuming, labor-intensive, and not cost-effective. However, computational approaches can identify THPs by utilizing sequence information alone, thus highlighting their great potential for large-scale identification of THPs. Herein, we propose NEPTUNE, a novel computational approach for the accurate and large-scale identification of THPs from sequence information. Specifically, we constructed variant baseline models from multiple feature encoding schemes coupled with six popular machine learning algorithms. Subsequently, we comprehensively assessed and investigated the effects of these baseline models on THP prediction. Finally, the probabilistic information generated by the optimal baseline models is fed into a support vector machine-based classifier to construct the final meta-predictor (NEPTUNE). Cross-validation and independent tests demonstrated that NEPTUNE achieved superior performance for THP prediction compared with its constituent baseline models and the existing methods. Moreover, we employed the powerful SHapley additive exPlanations method to improve the interpretation of NEPTUNE and elucidate the most important features for identifying THPs. Finally, we implemented an online web server using NEPTUNE, which is available at http://pmlabstack.pythonanywhere.com/NEPTUNE. NEPTUNE could be beneficial for the large-scale identification of unknown THP candidates for follow-up experimental validation.


Subject(s)
Neoplasms , Neptune , Algorithms , Computational Biology , Humans , Machine Learning , Peptides , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...