Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; : 142857, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032730

ABSTRACT

Mercury (Hg) is a toxic contaminant of global concern and the impact on Arctic ecosystems, particularly in seabirds, is critical due to large-scale Hg transport towards polar regions and its biomagnification in marine trophic systems. While the adverse effects of Hg on reproductive processes in seabirds are established, the understanding of Hg maternal transfer pathways and their control on Hg reproductive toxicity is limited. The combination of Hg compounds speciation (inorganic mercury and monomethylmercury MMHg) and Hg stable isotope composition in the different egg compartments (yolk, albumen, membrane, and shell) before embryo development was investigated to provide information on (i) Hg maternal transfer mechanisms, (ii) influence of egg biochemical composition on Hg organotropism and (iii) proxies of inputs of Hg contamination. Eggs of three seabird species (the common eider, the black-legged kittiwake and the little auk) collected within the same breeding period (summer 2020) in East Greenland were investigated. For all seabirds, albumen and membrane, the most protein-rich compartments, were the most contaminated (from 1.2 to 2.7 µg.g-1 for albumen and from 0.3 to 0.7 µg.g-1 for membrane). In these two compartments, more than 82% of the total Hg amount was in the form of MMHg. Additionally, mass-dependent fractionation values (δ202Hg) were higher in albumen and membrane in the three species. This result was mainly due the organotropism of MMHg as influenced by the biochemical properties and chemical binding affinity of these proteinous compartments. Among the different egg compartments, individuals and species, mass-independent fractionation values were comparable (mean±sd were 0.99±0.11‰, 0.78±0.11‰, 0.03±0.05‰, 0.04±0.10‰ for Δ199Hg, Δ201Hg, Δ200Hg and Δ204Hg, respectively). We conclude that initial MMHg accumulated in the three species originated from Arctic environmental reservoirs exhibiting similar and low photodemethylation extent. This result suggests a unique major source of MMHg in those ecosystems, potentially influenced by sea ice cover.

2.
Environ Res ; 238(Pt 1): 117066, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37660878

ABSTRACT

Sea ice plays a fundamental role in Arctic marine environments, by driving primary productivity and sustaining ice-associated ecosystems. Simultaneously, sea ice influences the contamination of Arctic marine organisms, by modifying contaminant cycles or their bioavailability. Changes in sea ice conditions could therefore profoundly impact the functioning of Arctic marine food webs and their contamination. Top predators such as seabirds, which are subject to bioaccumulation and biomagnification of contaminants, are particularly exposed. In this context, the present study aims to investigate the influence of sea ice and of the use of ice-derived resources on the contamination of seabirds by mercury (Hg). To this end, eggs of thick-billed murres (Brünnich's guillemots, Uria lomvia; n = 60) were collected on Prince Leopold Island (Canadian High Arctic) during four years of varying ice conditions (2010-2013). Trophic tracers (i.e., Highly Branched Isoprenoids, HBIs - an indicator of the use of ice-derived resources; carbon and nitrogen stable isotopes - indicators of foraging habitats and trophic status), as well as total Hg concentrations were quantified. Results showed that feeding on ice-derived resources (as indicated by HBI concentrations) was positively correlated to sea ice cover, and both positively influenced Hg concentrations in murre eggs. However, when testing for the best predictor with model selection, sea ice concentration only drove Hg contamination in murres. This work provides new insights into the role of sea ice and ice-derived resources in the contamination by Hg of Arctic wildlife. Further research is now needed to better understand the relationship between sea ice and Hg contamination in Arctic biota and its underlying mechanisms, but also to identify Hg sources in rapidly changing environmental conditions in the Arctic.


Subject(s)
Charadriiformes , Mercury , Animals , Ecosystem , Mercury/analysis , Canada , Environmental Monitoring , Arctic Regions , Food Chain , Nitrogen Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL