Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 870938, 2022.
Article in English | MEDLINE | ID: mdl-35495643

ABSTRACT

Two years after its emergence, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several vaccines. The extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates host cell entry by binding to the angiotensin converting enzyme 2 (ACE2) through its receptor binding domain (RBD), is the major target of neutralizing antibodies. Like to many other viral fusion proteins, the SARS-CoV-2 spike protein utilizes a glycan shield to thwart the host immune response. To grasp the influence of chemical signatures on carbohydrate mobility and reconcile the cryo-EM density of specific glycans we combined our cryo-EM map of the S ectodomain to 4.1 Å resolution, reconstructed from a limited number of particles, and all-atom molecular dynamics simulations. Chemical modifications modeled on representative glycans (defucosylation, sialylation and addition of terminal LacNAc units) show no significant influence on either protein shielding or glycan flexibility. By estimating at selected sites the local correlation between the full density map and atomic model-based maps derived from molecular dynamics simulations, we provide insight into the geometries of the α-Man-(1→3)-[α-Man-(1→6)-]-ß-Man-(1→4)-ß-GlcNAc(1→4)-ß-GlcNAc core common to all N-glycosylation sites.

2.
Glycobiology ; 31(8): 1005-1017, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33909073

ABSTRACT

Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognize Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray; among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a nonsubstituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.


Subject(s)
Glycoproteins , Schistosoma mansoni , Animals , DNA-Binding Proteins , Epitopes/chemistry , Fucose/metabolism , Glycoproteins/metabolism , Humans , Immunoglobulin M , Mammals/metabolism , Membrane Proteins , Mice , Polysaccharides/chemistry , Schistosoma mansoni/chemistry , Schistosoma mansoni/metabolism
3.
Sci Rep ; 10(1): 18725, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230115

ABSTRACT

Schmallenberg virus (SBV), an arthropod-transmitted pathogenic bunyavirus, continues to be a threat to the European livestock industry, causing morbidity and mortality among young ruminant livestock. Here, we describe a novel SBV subunit vaccine, based on bacterially expressed SBV nucleoprotein (SBV-N) administered with a veterinary-grade Saponin adjuvant. When assayed in an IFNAR-/- mouse model, SBV-N with Saponin induced strong non-neutralizing broadly virus-reactive antibodies, decreased clinical signs, as well as significantly reduced viremia. Vaccination assays also suggest that this level of immune protection is cell mediated, as evidenced by the lack of neutralizing antibodies, as well as interferon-γ secretion observed in vitro. Therefore, based on these results, bacterially expressed SBV-N, co-administered with veterinary-grade Saponin adjuvant may serve as a promising economical alternative to current SBV vaccines, and warrant further evaluation in large ruminant animal models. Moreover, we propose that this strategy may be applicable to other bunyaviruses.


Subject(s)
Orthobunyavirus/immunology , Orthobunyavirus/pathogenicity , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Viral/biosynthesis , Antibody Specificity , Broadly Neutralizing Antibodies/biosynthesis , Bunyaviridae Infections/immunology , Bunyaviridae Infections/prevention & control , Bunyaviridae Infections/veterinary , In Vitro Techniques , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, Knockout , Orthobunyavirus/genetics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Ruminants , Saponins/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
4.
J Biol Chem ; 295(1): 1-12, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31649031

ABSTRACT

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) that causes a devastating swine disease currently present in many countries of Africa, Europe, and Asia. Despite intense research efforts, relevant gaps in the architecture of the infectious virus particle remain. Here, we used single-particle cryo-EM to analyze the three-dimensional structure of the mature ASFV particle. Our results show that the ASFV virion, with a radial diameter of ∼2,080 Å, encloses a genome-containing nucleoid surrounded by two distinct icosahedral protein capsids and two lipoprotein membranes. The outer capsid forms a hexagonal lattice (triangulation number T = 277) composed of 8,280 copies of the double jelly-roll major capsid protein (MCP) p72, arranged in trimers displaying a pseudo-hexameric morphology, and of 60 copies of a penton protein at the vertices. The inner protein layer, organized as a T = 19 capsid, confines the core shell, and it is composed of the mature products derived from the ASFV polyproteins pp220 and pp62. Also, an icosahedral membrane lies between the two protein layers, whereas a pleomorphic envelope wraps the outer capsid. This high-level organization confers to ASFV a unique architecture among the NCLDVs that likely reflects the complexity of its infection process and may help explain current challenges in controlling it.


Subject(s)
African Swine Fever Virus/ultrastructure , Capsid Proteins/ultrastructure , Capsid/ultrastructure , Viral Envelope Proteins/ultrastructure , African Swine Fever Virus/metabolism , Animals , Capsid Proteins/chemistry , Chlorocebus aethiops , Cryoelectron Microscopy , Lipids/chemistry , Protein Multimerization , Vero Cells , Viral Envelope Proteins/chemistry
5.
Nat Commun ; 10(1): 1184, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862777

ABSTRACT

The vertical double ß-barrel major capsid protein (MCP) fold, fingerprint of the PRD1-adeno viral lineage, is widespread in many viruses infecting organisms across the three domains of life. The discovery of PRD1-like viruses with two MCPs challenged the known assembly principles. Here, we present the cryo-electron microscopy (cryo-EM) structures of the archaeal, halophilic, internal membrane-containing Haloarcula californiae icosahedral virus 1 (HCIV-1) and Haloarcula hispanica icosahedral virus 2 (HHIV-2) at 3.7 and 3.8 Å resolution, respectively. Our structures reveal proteins located beneath the morphologically distinct two- and three-tower capsomers and homopentameric membrane proteins at the vertices that orchestrate the positioning of pre-formed vertical single ß-barrel MCP heterodimers. The cryo-EM based structures together with the proteomics data provide insights into the assembly mechanism of this type of viruses and into those with membrane-less double ß-barrel MCPs.


Subject(s)
Archaeal Viruses/physiology , Capsid Proteins/ultrastructure , DNA Viruses/physiology , Haloarcula/virology , Virus Assembly , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cryoelectron Microscopy , Models, Molecular , Protein Conformation, beta-Strand , Protein Multimerization , Virion/ultrastructure
6.
Antiviral Res ; 141: 107-115, 2017 05.
Article in English | MEDLINE | ID: mdl-28235558

ABSTRACT

Schmallenberg virus (SBV) is an RNA virus of the Bunyaviridae family, genus Orthobunyavirus that infects wild and livestock species of ruminants. While inactivated and attenuated vaccines have been shown to prevent SBV infection, little is known about their mode of immunity; specifically, which components of the virus are responsible for inducing immunological responses in the host. As previous DNA vaccination experiments on other bunyaviruses have found that glycoproteins, as well as modified (i.e. ubiquitinated) nucleoproteins (N) can confer immunity against virulent viral challenge, constructs encoding for fragments of SBV glycoproteins GN and GC, as well as ubiquitinated and non-ubiquitinated N were cloned in mammalian expression vectors, and vaccinated intramuscularly in IFNAR-/- mice. Upon viral challenge with virulent SBV, disease progression was monitored. Both the ubiquitinated and non-ubiquitinated nucleoprotein candidates elicited high titers of antibodies against SBV, but only the non-ubiquitinated candidate induced statistically significant protection of the vaccinated mice from viral challenge. Another construct encoding for a putative ectodomain of glycoprotein GC (segment aa. 678-947) also reduced the SBV-viremia in mice after SBV challenge. When compared to other experimental groups, both the nucleoprotein and GC-ectodomain vaccinated groups displayed significantly reduced viremia, as well as exhibiting no clinical signs of SBV infection. These results show that both the nucleoprotein and the putative GC-ectodomain can serve as protective immunological targets against SBV infection, highlighting that viral glycoproteins, as well as nucleoproteins are potent targets in vaccination strategies against bunyaviruses.


Subject(s)
Orthobunyavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bunyaviridae Infections/prevention & control , Bunyaviridae Infections/virology , CD8-Positive T-Lymphocytes , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/immunology , Immunization/methods , Mice , Nucleoproteins/chemistry , Nucleoproteins/genetics , Nucleoproteins/immunology , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Vaccines, Attenuated/immunology , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
7.
Structure ; 23(10): 1866-1877, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26320579

ABSTRACT

Archaeal viruses constitute the least explored niche within the virosphere. Structure-based approaches have revealed close relationships between viruses infecting organisms from different domains of life. Here, using biochemical and cryo-electron microscopy techniques, we solved the structure of euryarchaeal, halophilic, internal membrane-containing Haloarcula hispanica icosahedral virus 2 (HHIV-2). We show that the density of the two major capsid proteins (MCPs) recapitulates vertical single ß-barrel proteins and that disulfide bridges stabilize the capsid. Below, ordered density is visible close to the membrane and at the five-fold vertices underneath the host-interacting vertex complex underpinning membrane-protein interactions. The HHIV-2 structure exemplifies the division of conserved architectural elements of a virion, such as the capsid, from those that evolve rapidly due to selective environmental pressure such as host-recognizing structures. We propose that in viruses with two vertical single ß-barrel MCPs the vesicle is indispensable, and membrane-protein interactions serve as protein-railings for guiding the assembly.


Subject(s)
Archaeal Viruses/ultrastructure , Capsid Proteins/chemistry , Capsid/ultrastructure , Genome, Viral , Virion/ultrastructure , Virus Assembly , Archaeal Viruses/genetics , Archaeal Viruses/metabolism , Binding Sites , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Disulfides , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Haloarcula/virology , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salt Tolerance , Virion/genetics , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...