Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nature ; 618(7963): 126-133, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225984

ABSTRACT

A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis1,2. Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain-spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals3 and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking4-6. A highly reliable BSI is calibrated within a few minutes. This reliability has remained stable over one year, including during independent use at home. The participant reports that the BSI enables natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains. Moreover, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis.


Subject(s)
Brain-Computer Interfaces , Brain , Electric Stimulation Therapy , Neurological Rehabilitation , Spinal Cord Injuries , Spinal Cord , Walking , Humans , Brain/physiology , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Quadriplegia/etiology , Quadriplegia/rehabilitation , Quadriplegia/therapy , Reproducibility of Results , Spinal Cord/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/therapy , Walking/physiology , Leg/physiology , Neurological Rehabilitation/instrumentation , Neurological Rehabilitation/methods , Male
2.
3.
J Neural Eng ; 19(2)2022 03 30.
Article in English | MEDLINE | ID: mdl-35234665

ABSTRACT

Objective.The article aims at addressing 2 challenges to step motor brain-computer interface (BCI) out of laboratories: asynchronous control of complex bimanual effectors with large numbers of degrees of freedom, using chronic and safe recorders, and the decoding performance stability over time without frequent decoder recalibration.Approach.Closed-loop adaptive/incremental decoder training is one strategy to create a model stable over time. Adaptive decoders update their parameters with new incoming data, optimizing the model parameters in real time. It allows cross-session training with multiple recording conditions during closed loop BCI experiments. In the article, an adaptive tensor-based recursive exponentially weighted Markov-switching multi-linear model (REW-MSLM) decoder is proposed. REW-MSLM uses a mixture of expert (ME) architecture, mixing or switching independent decoders (experts) according to the probability estimated by a 'gating' model. A Hidden Markov model approach is employed as gating model to improve the decoding robustness and to provide strong idle state support. The ME architecture fits the multi-limb paradigm associating an expert to a particular limb or action.Main results.Asynchronous control of an exoskeleton by a tetraplegic patient using a chronically implanted epidural electrocorticography (EpiCoG) recorder is reported. The stable over a period of six months (without decoder recalibration) eight-dimensional alternative bimanual control of the exoskeleton and its virtual avatar is demonstrated.Significance.Based on the long-term (>36 months) chronic bilateral EpiCoG recordings in a tetraplegic (ClinicalTrials.gov, NCT02550522), we addressed the poorly explored field of asynchronous bimanual BCI. The new decoder was designed to meet to several challenges: the high-dimensional control of a complex effector in experiments closer to real-world behavior (point-to-point pursuit versus conventional center-out tasks), with the ability of the BCI system to act as a stand-alone device switching between idle and control states, and a stable performance over a long period of time without decoder recalibration.


Subject(s)
Brain-Computer Interfaces , Exoskeleton Device , Clinical Studies as Topic , Electrocorticography/methods , Epidural Space , Humans , Linear Models
4.
J Neural Eng ; 18(5)2021 09 09.
Article in English | MEDLINE | ID: mdl-34425566

ABSTRACT

Objective.The evaluation of the long-term stability of ElectroCorticoGram (ECoG) signals is an important scientific question as new implantable recording devices can be used for medical purposes such as Brain-Computer Interface (BCI) or brain monitoring.Approach.The long-term clinical validation of wireless implantable multi-channel acquisition system for generic interface with neurons (WIMAGINE), a wireless 64-channel epidural ECoG recorder was investigated. The WIMAGINE device was implanted in two quadriplegic patients within the context of a BCI protocol. This study focused on the ECoG signal stability in two patients bilaterally implanted in June 2017 (P1) and in November 2019 (P2).Methods. The ECoG signal was recorded at rest prior to each BCI session resulting in a 32 month and in a 14 month follow-up for P1 and P2 respectively. State-of-the-art signal evaluation metrics such as root mean square (RMS), the band power (BP), the signal to noise ratio (SNR), the effective bandwidth (EBW) and the spectral edge frequency (SEF) were used to evaluate stability of signal over the implantation time course. The time-frequency maps obtained from task-related motor activations were also studied to investigate the long-term selectivity of the electrodes.Mainresults.Based on temporal linear regressions, we report a limited decrease of the signal average level (RMS), spectral distribution (BP) and SNR, and a remarkable steadiness of the EBW and SEF. Time-frequency maps obtained during motor imagery, showed a high level of discrimination 1 month after surgery and also after 2 years.Conclusions.The WIMAGINE epidural device showed high stability over time. The signal evaluation metrics of two quadriplegic patients during 32 months and 14 months respectively provide strong evidence that this wireless implant is well-suited for long-term ECoG recording.Significance.These findings are relevant for the future of implantable BCIs, and could benefit other patients with spinal cord injury, amyotrophic lateral sclerosis, neuromuscular diseases or drug-resistant epilepsy.


Subject(s)
Brain-Computer Interfaces , Brain , Electrocorticography , Electrodes, Implanted , Electroencephalography , Epidural Space , Humans , Wireless Technology
5.
J Neural Eng ; 18(5)2021 04 08.
Article in English | MEDLINE | ID: mdl-33770779

ABSTRACT

Objective. Over the last decade, Riemannian geometry has shown promising results for motor imagery classification. However, extracting the underlying spatial features is not as straightforward as for applying common spatial pattern (CSP) filtering prior to classification. In this article, we propose a simple way to extract the spatial patterns obtained from Riemannian classification: the Riemannian spatial pattern (RSP) method, which is based on the backward channel selection procedure.Approach. The RSP method was compared to the CSP approach on ECoG data obtained from a quadriplegic patient while performing imagined movements of arm articulations and fingers.Main results.Similar results were found between the RSP and CSP methods for mapping each motor imagery task with activations following the classical somatotopic organization. Clustering obtained by pairwise comparisons of imagined motor movements however, revealed higher differentiation for the RSP method compared to the CSP approach. Importantly, the RSP approach could provide a precise comparison of the imagined finger flexions which added supplementary information to the mapping results.Significance.Our new RSP method illustrates the interest of the Riemannian framework in the spatial domain and as such offers new avenues for the neuroimaging community. This study is part of an ongoing clinical trial registered with ClinicalTrials.gov, NCT02550522.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Cluster Analysis , Electroencephalography/methods , Humans , Imagination , Movement
6.
Lancet Neurol ; 18(12): 1112-1122, 2019 12.
Article in English | MEDLINE | ID: mdl-31587955

ABSTRACT

BACKGROUND: Approximately 20% of traumatic cervical spinal cord injuries result in tetraplegia. Neuroprosthetics are being developed to manage this condition and thus improve the lives of patients. We aimed to test the feasibility of a semi-invasive technique that uses brain signals to drive an exoskeleton. METHODS: We recruited two participants at Clinatec research centre, associated with Grenoble University Hospital, Grenoble, France, into our ongoing clinical trial. Inclusion criteria were age 18-45 years, stability of neurological deficits, a need for additional mobility expressed by the patient, ambulatory or hospitalised monitoring, registration in the French social security system, and signed informed consent. The exclusion criteria were previous brain surgery, anticoagulant treatments, neuropsychological sequelae, depression, substance dependence or misuse, and contraindications to magnetoencephalography (MEG), EEG, or MRI. One participant was excluded because of a technical problem with the implants. The remaining participant was a 28-year-old man, who had tetraplegia following a C4-C5 spinal cord injury. Two bilateral wireless epidural recorders, each with 64 electrodes, were implanted over the upper limb sensorimotor areas of the brain. Epidural electrocorticographic (ECoG) signals were processed online by an adaptive decoding algorithm to send commands to effectors (virtual avatar or exoskeleton). Throughout the 24 months of the study, the patient did various mental tasks to progressively increase the number of degrees of freedom. FINDINGS: Between June 12, 2017, and July 21, 2019, the patient cortically controlled a programme that simulated walking and made bimanual, multi-joint, upper-limb movements with eight degrees of freedom during various reach-and-touch tasks and wrist rotations, using a virtual avatar at home (64·0% [SD 5·1] success) or an exoskeleton in the laboratory (70·9% [11·6] success). Compared with microelectrodes, epidural ECoG is semi-invasive and has similar efficiency. The decoding models were reusable for up to approximately 7 weeks without recalibration. INTERPRETATION: These results showed long-term (24-month) activation of a four-limb neuroprosthetic exoskeleton by a complete brain-machine interface system using continuous, online epidural ECoG to decode brain activity in a tetraplegic patient. Up to eight degrees of freedom could be simultaneously controlled using a unique model, which was reusable without recalibration for up to about 7 weeks. FUNDING: French Atomic Energy Commission, French Ministry of Health, Edmond J Safra Philanthropic Foundation, Fondation Motrice, Fondation Nanosciences, Institut Carnot, Fonds de Dotation Clinatec.


Subject(s)
Brain-Computer Interfaces , Exoskeleton Device , Implantable Neurostimulators , Proof of Concept Study , Quadriplegia/rehabilitation , Wireless Technology , Adult , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/injuries , Cervical Vertebrae/surgery , Epidural Space/diagnostic imaging , Epidural Space/surgery , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Quadriplegia/diagnostic imaging , Quadriplegia/surgery , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/surgery , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/surgery , Wireless Technology/instrumentation
7.
Sci Rep ; 7(1): 16281, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176638

ABSTRACT

A tensor-input/tensor-output Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) regression algorithm is proposed for high dimension multi-way (tensor) data treatment and adaptive modeling of complex processes in real-time. The method unites fast and efficient calculation schemes of the Recursive Exponentially Weighted PLS with the robustness of tensor-based approaches. Moreover, contrary to other multi-way recursive algorithms, no loss of information occurs in the REW-NPLS. In addition, the Recursive-Validation method for recursive estimation of the hyper-parameters is proposed instead of conventional cross-validation procedure. The approach was then compared to state-of-the-art methods. The efficiency of the methods was tested in electrocorticography (ECoG) and magnetoencephalography (MEG) datasets. The algorithms are implemented in software suitable for real-time operation. Although the Brain-Computer Interface applications are used to demonstrate the methods, the proposed approaches could be efficiently used in a wide range of tasks beyond neuroscience uniting complex multi-modal data structures, adaptive modeling, and real-time computational requirements.


Subject(s)
Brain-Computer Interfaces , Least-Squares Analysis , Algorithms , Electrocorticography , Electroencephalography , Magnetoencephalography , Neurosciences/methods , Software
8.
IEEE Trans Neural Syst Rehabil Eng ; 23(1): 10-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25014960

ABSTRACT

A wireless 64-channel ElectroCorticoGram (ECoG) recording implant named WIMAGINE has been designed for various clinical applications. The device is aimed at interfacing a cortical electrode array to an external computer for neural recording and control applications. This active implantable medical device is able to record neural activity on 64 electrodes with selectable gain and sampling frequency, with less than 1 µV(RMS) input referred noise in the [0.5 Hz - 300 Hz] band. It is powered remotely through an inductive link at 13.56 MHz which provides up to 100 mW. The digitized data is transmitted wirelessly to a custom designed base station connected to a PC. The hermetic housing and the antennae have been designed and optimized to ease the surgery. The design of this implant takes into account all the requirements of a clinical trial, in particular safety, reliability, and compliance with the regulations applicable to class III AIMD. The main features of this WIMAGINE implantable device and its architecture are presented, as well as its functional performances and long-term biocompatibility results.


Subject(s)
Electroencephalography/instrumentation , Wireless Technology/instrumentation , Animals , Brain-Computer Interfaces , Electrodes, Implanted , Electronics , Equipment Design , Humans , Macaca fascicularis , Macaca mulatta , Materials Testing , Neural Prostheses , Signal Processing, Computer-Assisted , Software
9.
Article in English | MEDLINE | ID: mdl-25570185

ABSTRACT

The goal of the CLINATEC® Brain Computer Interface (BCI) Project is to improve tetraplegic subjects' quality of life by allowing them to interact with their environment through the control of effectors, such as an exoskeleton. The BCI platform is based on a wireless 64-channel ElectroCorticoGram (ECoG) recording implant WIMAGINE®, designed for long-term clinical application, and a BCI software environment associated to a 4-limb exoskeleton EMY (Enhancing MobilitY). Innovative ECoG signal decoding algorithms will allow the control of the exoskeleton by the subject's brain activity. Currently, the whole BCI platform was tested in real-time in preclinical experiments carried out in nonhuman primates. In these experiments, the exoskeleton arm was controlled by means of the decoded neuronal activity.


Subject(s)
Brain-Computer Interfaces , Electrocorticography , Algorithms , Animals , Electrodes, Implanted , Electroencephalography , Exoskeleton Device , Macaca mulatta , Quality of Life , Signal Processing, Computer-Assisted
10.
Brain Stimul ; 6(3): 241-7, 2013 May.
Article in English | MEDLINE | ID: mdl-22727526

ABSTRACT

BACKGROUND: Responsive deep brain stimulation (rDBS) has been recently proposed to block epileptic seizures at onset. Yet, long-term stability of brain responses to such kind of stimulation is not known. OBJECTIVE: To quantify the neural adaptation to repeated rDBS as measured by the changes of anti-epileptic efficacy of bilateral DBS of the substantia nigra pars reticulata (SNr) versus auditory stimulation, in a rat model of spontaneous recurrent absence seizures (GAERS). METHODS: Local field potentials (LFP) were recorded in freely moving animals during 1 h up to 24 h under automated responsive stimulations (SNr-DBS and auditory). Comparison of seizure features was used to characterise transient (repetition-suppression effect) and long-lasting (stability of anti-epileptic efficacy, i.e. ratio of successfully interrupted seizures) effects of responsive stimulations. RESULTS: SNr-DBS was more efficient than auditory stimulation in blocking seizures (97% vs. 52% of seizures interrupted, respectively). Sensitivity to minimal interstimulus interval was much stronger for SNr-DBS than for auditory stimulation. Anti-epileptic efficacy of SNr-DBS was remarkably stable during long-term (24 h) recordings. CONCLUSIONS: In the GAERS model, we demonstrated the superiority of SNr-DBS to suppress seizures, as compared to auditory stimulation. Importantly, we found no long-term habituation to rDBS. However, when seizure recurrence was frequent, rDBS lack anti-epileptic efficacy because responsive stimulations became too close (time interval < 40 s) suggesting the existence of a refractory period. This study thus motivates the use of automated rDBS in patients having transient seizures separated by sufficiently long intervals.


Subject(s)
Acoustic Stimulation/methods , Adaptation, Physiological/physiology , Deep Brain Stimulation/methods , Epilepsy, Absence/physiopathology , Epilepsy, Absence/therapy , Substantia Nigra/physiology , Analysis of Variance , Animals , Anticonvulsants/therapeutic use , Disease Models, Animal , Electroencephalography , Epilepsy, Absence/genetics , Evoked Potentials, Auditory/physiology , Male , Rats , Time Factors
11.
Prog Brain Res ; 194: 71-82, 2011.
Article in English | MEDLINE | ID: mdl-21867795

ABSTRACT

UNLABELLED: Brain-computer interfaces (BCIs) include stimulators, infusion devices, and neuroprostheses. They all belong to functional neurosurgery. Deep brain stimulators (DBS) are widely used for therapy and are in need of innovative evolutions. Robotized exoskeletons require BCIs able to drive up to 26 degrees of freedom (DoF). We report the nanomicrotechnology development of prototypes for new 3D DBS and for motor neuroprostheses. For this complex project, all compounds have been designed and are being tested. Experiments were performed in rats and primates for proof of concepts and development of the electroencephalogram (EEG) recognition algorithm. METHODS: Various devices have been designed. (A) In human, a programmable multiplexer connecting five tetrapolar (20 contacts) electrodes to one DBS channel has been designed and implanted bilaterally into STN in two Parkinsonian patients. (B) A 50-mm diameter titanium implant, telepowered, including a radioset, emitting ECoG data recorded by a 64-electrode array using an application-specific integrated circuit, is being designed to be implanted in a 50-mm trephine opening. Data received by the radioreceiver are processed through an original wavelet-based Iterative N-way Partial Least Square algorithm (INPLS, CEA patent). Animals, implanted with ECoG recording electrodes, had to press a lever to obtain a reward. The brain signature associated to the lever press (LP) was detected online by ECoG processing using INPLS. This detection allowed triggering the food dispenser. RESULTS: (A) The 3D multiplexer allowed tailoring the electrical field to the STN. The multiplication of the contacts affected the battery life and suggested different implantation schemes. (B) The components of the human implantable cortical BCI are being tested for reliability and toxicology to meet criteria for chronicle implantation in 2012. (C) In rats, the algorithm INPLS could detect the cortical signature with an accuracy of about 80% of LPs on the electrodes with the best correlation coefficient (located over the cerebellar cortex), 1% of the algorithm decisions were false positives. We aim to pilot effectors with DoF up to 3 in monkeys. CONCLUSION: We have designed multielectrodes wireless implants to open the way for BCI ECoG-driven effectors. These technologies are also used to develop new generations of brain stimulators, either cortical or for deep targets. This chapter is aimed at illustrating that BCIs are actually the daily background of DBS, that the evolution of the method involves a growing multiplicity of targets and indications, that new technologies make possible and simpler than before to design innovative solutions to improve DBS methodology, and that the coming out of BCI-driven neuroprostheses for compensation of motor and sensory deficits is a natural evolution of functional neurosurgery.


Subject(s)
Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Electrodes, Implanted , User-Computer Interface , Algorithms , Animals , Electroencephalography , Epilepsy/therapy , Humans , Mental Disorders/therapy , Parkinson Disease/therapy , Software
12.
Biosens Bioelectron ; 25(8): 1889-96, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20106652

ABSTRACT

Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks.


Subject(s)
Action Potentials/physiology , Electronics/instrumentation , Microelectrodes , Neurons/physiology , Spinal Cord/physiology , Animals , Equipment Design , Equipment Failure Analysis , Mice , Nerve Net/physiology , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...