Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(2): 700-716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382573

ABSTRACT

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Subject(s)
Climate , Orchidaceae , Australia , Phylogeny , Phylogeography , Orchidaceae/genetics
2.
Mol Phylogenet Evol ; 189: 107929, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37726037

ABSTRACT

Ameroglossum is a rare plant genus endemic to northeastern of Brazil, initially monospecific (A. pernambucense) and recently expanded by the description of eight new species and two related genera. The genus was initially placed in the family Scrophulariaceae, but this has never been phylogenetically tested. This group is ecologically restricted to rocky inselberg habitats that function as island-like systems (ILS) with spatial fragmentation, limited area, environmental heterogeneity, temporal isolation and low connectivity. Here we use a phylogenetic perspective to test the hypothesis that Ameroglossum diversification was related to island-like radiation in inselbergs. Our results support that Ameroglossum is monophyletic only with the inclusion of Catimbaua and Isabelcristinia (named here as Ameroglossum sensu lato) and this group was well-supported in the family Linderniaceae. Biogeographic analyses suggest that the ancestral of Ameroglossum and related genus arrived in South America c.a. 15 million years ago by long-distance dispersal, given the ancestral distribution of Linderniaceae in Africa. In rocky outcrop habitats, Ameroglossum s.l. developed floral morphological specialization associated with pollinating hummingbirds, compatible with an island-like model. However, no increase in speciation rate was detected, which may be related to high extinction rates and/or slow diversification rate in this ecologically restrictive environment. Altogether, in Ameroglossum key innovations involving flowers seem to have offered opportunities for evolution of greater phenotypic diversity and occupation of new niches in rocky outcrop environments.


Subject(s)
Ecosystem , Lamiales , Phylogeny , Flowers/genetics , Brazil
4.
Ann Bot ; 131(1): 123-142, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35029647

ABSTRACT

BACKGROUND AND AIMS: The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS: We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS: RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS: The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.


Subject(s)
Nicotiana , Solanaceae , Nicotiana/genetics , Phylogeny , Solanaceae/genetics , Genome Size , Genome, Plant , Evolution, Molecular , Australia , Polyploidy , Vegetables/genetics , Chromosomes, Plant
5.
Mol Biol Evol ; 39(8)2022 08 03.
Article in English | MEDLINE | ID: mdl-35904928

ABSTRACT

To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.


Subject(s)
Orchidaceae , Siblings , DNA Transposable Elements/genetics , Diploidy , Genome, Plant , Humans , Orchidaceae/genetics , Polyploidy , Wetlands
6.
Plant J ; 111(1): 7-18, 2022 07.
Article in English | MEDLINE | ID: mdl-35535507

ABSTRACT

One of the most commonly encountered and frequently cited laboratory organisms worldwide is classified taxonomically as Nicotiana benthamiana (Solanaceae), an accession of which, typically referred to as LAB, is renowned for its unique susceptibility to a wide range of plant viruses and hence capacity to be transformed using a variety of methods. This susceptibility is the result of an insertion and consequent loss of function in the RNA-dependent RNA polymerase 1 (Rdr1) gene. However, the origin and age of LAB and the evolution of N. benthamiana across its wide distribution in Australia remain relatively underexplored. Here, we have used multispecies coalescent methods on genome-wide single nucleotide polymorphisms (SNPs) to assess species limits, phylogenetic relationships and divergence times within N. benthamiana. Our results show that the previous taxonomic concept of this species in fact comprises five geographically, morphologically and genetically distinct species, one of which includes LAB. We provide clear evidence that LAB is closely related to accessions collected further north in the Northern Territory; this species split much earlier, c. 1.1 million years ago, from their common ancestor than the other four in this clade and is morphologically the most distinctive. We also found that the Rdr1 gene insertion is variable among accessions from the northern portions of the Northern Territory. Furthermore, this long-isolated species typically grows in sheltered sites in subtropical/tropical monsoon areas of northern Australia, contradicting the previously advanced hypothesis that this species is an extremophile that has traded viral resistance for precocious development.


Subject(s)
Nicotiana , RNA-Dependent RNA Polymerase , Australia , Genomics , Phylogeny , RNA-Dependent RNA Polymerase/genetics , Nicotiana/genetics
7.
BMC Plant Biol ; 22(1): 179, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392808

ABSTRACT

BACKGROUND: To illustrate the molecular mechanism of mycoheterotrophic interactions between orchids and fungi, we assembled chromosome-level reference genome of Gastrodia menghaiensis (Orchidaceae) and analyzed the genomes of two species of Gastrodia. RESULTS: Our analyses indicated that the genomes of Gastrodia are globally diminished in comparison to autotrophic orchids, even compared to Cuscuta (a plant parasite). Genes involved in arbuscular mycorrhizae colonization were found in genomes of Gastrodia, and many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids. The highly expressed genes for fatty acid and ammonium root transporters suggest that fungi receive material from orchids, although most raw materials flow from the fungi. Many nuclear genes (e.g. biosynthesis of aromatic amino acid L-tryptophan) supporting plastid functions are expanded compared to photosynthetic orchids, an indication of the importance of plastids even in totally mycoheterotrophic species. CONCLUSION: Gastrodia menghaiensis has the smallest proteome thus far among angiosperms. Many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids.


Subject(s)
Gastrodia , Mycorrhizae , Orchidaceae , Gastrodia/genetics , Mycorrhizae/genetics , Orchidaceae/genetics , Orchidaceae/microbiology , Phylogeny , Symbiosis/genetics
8.
BMC Biol ; 19(1): 232, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34711223

ABSTRACT

BACKGROUND: Flowering plants (angiosperms) are dominant components of global terrestrial ecosystems, but phylogenetic relationships at the familial level and above remain only partially resolved, greatly impeding our full understanding of their evolution and early diversification. The plastome, typically mapped as a circular genome, has been the most important molecular data source for plant phylogeny reconstruction for decades. RESULTS: Here, we assembled by far the largest plastid dataset of angiosperms, composed of 80 genes from 4792 plastomes of 4660 species in 2024 genera representing all currently recognized families. Our phylogenetic tree (PPA II) is essentially congruent with those of previous plastid phylogenomic analyses but generally provides greater clade support. In the PPA II tree, 75% of nodes at or above the ordinal level and 78% at or above the familial level were resolved with high bootstrap support (BP ≥ 90). We obtained strong support for many interordinal and interfamilial relationships that were poorly resolved previously within the core eudicots, such as Dilleniales, Saxifragales, and Vitales being resolved as successive sisters to the remaining rosids, and Santalales, Berberidopsidales, and Caryophyllales as successive sisters to the asterids. However, the placement of magnoliids, although resolved as sister to all other Mesangiospermae, is not well supported and disagrees with topologies inferred from nuclear data. Relationships among the five major clades of Mesangiospermae remain intractable despite increased sampling, probably due to an ancient rapid radiation. CONCLUSIONS: We provide the most comprehensive dataset of plastomes to date and a well-resolved phylogenetic tree, which together provide a strong foundation for future evolutionary studies of flowering plants.


Subject(s)
Magnoliopsida , Cell Nucleus , Ecosystem , Humans , Magnoliopsida/genetics , Phylogeny , Plastids
9.
PLoS One ; 16(8): e0256126, 2021.
Article in English | MEDLINE | ID: mdl-34449781

ABSTRACT

We present the first comparative plastome study of Pleurothallidinae with analyses of structural and molecular characteristics and identification of the ten most-variable regions to be incorporated in future phylogenetic studies. We sequenced complete plastomes of eight species in the subtribe and compared phylogenetic results of these to parallel analyses of their nuclear ribosomal DNA operon (26S, 18S, and 5.8S plus associated spacers) and partial mitochondrial genome sequences (29-38 genes and partial introns). These plastomes have the typical quadripartite structure for which gene content is similar to those of other orchids, with variation only in the composition of the ndh genes. The independent loss of ndh genes had an impact on which genes border the inverted repeats and thus the size of the small single-copy region, leading to variation in overall plastome length. Analyses of 68 coding sequences indicated the same pattern of codon usage as in other orchids, and 13 protein-coding genes under positive selection were detected. Also, we identified 62 polymorphic microsatellite loci and ten highly variable regions, for which we designed primers. Phylogenomic analyses showed that the top ten mutational hotspots represent well the phylogenetic relationships found with whole plastome sequences. However, strongly supported incongruence was observed among plastid, nuclear ribosomal DNA operon, and mitochondrial DNA trees, indicating possible occurrence of incomplete lineage sorting and/or introgressive hybridization. Despite the incongruence, the mtDNA tree retrieved some clades found in other analyses. These results, together with performance in recent studies, support a future role for mitochondrial markers in Pleurothallidinae phylogenetics.


Subject(s)
Genome, Plastid/genetics , Orchidaceae/genetics , Plastids/genetics , Base Sequence/genetics , Cell Nucleus/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Orchidaceae/metabolism , Phylogeny
10.
Am J Bot ; 108(7): 1166-1180, 2021 07.
Article in English | MEDLINE | ID: mdl-34250591

ABSTRACT

PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.


Subject(s)
Genome, Plastid , Orchidaceae , Cell Nucleus/genetics , Orchidaceae/genetics , Phylogeny , Plastids/genetics
12.
Sci Rep ; 11(1): 6858, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767214

ABSTRACT

Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth-death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.


Subject(s)
Biodiversity , Evolution, Molecular , Genome, Plastid , Orchidaceae/genetics , Phylogeny , Plastids/genetics , Orchidaceae/classification
13.
Ann Bot ; 127(5): 681-695, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33598697

ABSTRACT

BACKGROUND AND AIMS: Extant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution. METHODS: DNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum. KEY RESULTS: On a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes. CONCLUSIONS: The first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.


Subject(s)
Equisetum , Tracheophyta , Equisetum/genetics , Evolution, Molecular , Fossils , Genome Size , Phylogeny
14.
Mol Phylogenet Evol ; 157: 107062, 2021 04.
Article in English | MEDLINE | ID: mdl-33387648

ABSTRACT

We explore the origins of the extraordinary plant diversity in the Qinghai-Tibetan Plateau (QTP) using Orchidinae (Orchidaceae) as a model. Our results indicate that six major clades in Orchidinae exhibited substantial variation in the temporal and spatial sequence of diversification. Our time-calibrated phylogenetic model suggests that the species-richness of Orchidinae arose through a combination of in situ diversification, colonisation, and local recruitment. There are multiple origins of species-richness of Orchidinae in the QTP, and pre-adaptations in clades from North Temperate and alpine regions were crucial for in situ diversification. The geographic analysis identified 29 dispersals from Asia, Africa and Europe into the QTP and 15 dispersals out. Most endemic species of Orchidinae evolved within the past six million years.


Subject(s)
Adaptation, Physiological , Ecosystem , Orchidaceae/classification , Phylogeny , Acclimatization , Africa , Asia , Biodiversity , Europe , Tibet , Time Factors
15.
Front Plant Sci ; 11: 799, 2020.
Article in English | MEDLINE | ID: mdl-32719690

ABSTRACT

Pantropical Bulbophyllum, with ∼2,200 species, is one of the largest genera in Orchidaceae. Although phylogenetics and taxonomy of the ∼60 American species in the genus are generally well understood, some species complexes need more study to clearly delimit their component species and provide information about their evolutionary history. Previous research has suggested that the plastid genome includes phylogenetic markers capable of providing resolution at low taxonomic levels, and thus it could be an effective tool if these divergent regions can be identified. In this study, we sequenced the complete plastid genome of eight Bulbophyllum species, representing five of six Neotropical taxonomic sections. All plastomes conserve the typical quadripartite structure, and, although the general structure of plastid genomes is conserved, differences in ndh-gene composition and total length were detected. Total length was determined by contraction and expansion of the small single-copy region, a result of an independent loss of the seven ndh genes. Selection analyses indicated that protein-coding genes were generally well conserved, but in four genes, we identified 95 putative sites under positive selection. Furthermore, a total of 54 polymorphic simple sequence repeats were identified, for which we developed amplification primers. In addition, we propose 10 regions with potential to improve phylogenetic analyses of Neotropical Bulbophyllum species.

16.
Mol Phylogenet Evol ; 148: 106818, 2020 07.
Article in English | MEDLINE | ID: mdl-32294543

ABSTRACT

The families of the monocot order Liliales exhibit highly contrasting characteristic of photosynthetic and mycoheterotrophic life histories. Although previous phylogenetic and morphological studies of Liliales have been conducted, they have not examined molecular evolution associated with this contrasting phenomenon. Here, we conduct the first comparative plastome study of all ten families of Liliales using 29 newly sequenced plastid genomes analyzed together with previously published data. We also present a phylogenetic analysis for Liliales of 78 plastid genes combined with 22 genes from all three genomes (nuclear 18S rDNA and phyC; 17 plastid genes; and mitochondrial matR, atpA, and cob). Within the newly generated phylogenetic tree of Liliales, we evaluate the ancestral state changes of selected morphological traits in the order. There are no significant differences in plastid genome features among species that show divergent characteristics correlated with family circumscriptions. However, the results clearly differentiate between photosynthetic and mycoheterotrophic taxa of Liliales in terms of genome structure, and gene content and order. The newly sequenced plastid genomes and combined three-genome data revealed Smilacaceae as sister to Liliaceae instead of Philesiaceae and Ripogonaceae. Additionally, we propose a revised familial classification system of Liliales that consists of nine families, considering Ripogonaceae a synonym of Philesiaceae. The ancestral state reconstruction indicated synapomorphies for each family of Liliales, except Liliaceae, Melanthiaceae and Colchicaceae. A taxonomic key for all nine families of Liliales is also provided.


Subject(s)
Evolution, Molecular , Genome, Plastid , Lilium/genetics , Base Sequence , Bayes Theorem , DNA, Chloroplast/genetics , Lilium/anatomy & histology , Open Reading Frames/genetics , Photosynthesis , Phylogeny , Species Specificity
17.
Genes (Basel) ; 11(2)2020 02 19.
Article in English | MEDLINE | ID: mdl-32092894

ABSTRACT

Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana.


Subject(s)
Nicotiana/genetics , Polyploidy , Repetitive Sequences, Nucleic Acid/genetics , Cytoplasm/metabolism , DNA, Plant/genetics , Evolution, Molecular , Genome Size/genetics , Genome, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Maternal Inheritance/genetics , Paternal Inheritance/genetics , Segmental Duplications, Genomic/genetics , Species Specificity , Nicotiana/metabolism
18.
PLoS One ; 15(1): e0227991, 2020.
Article in English | MEDLINE | ID: mdl-31990943

ABSTRACT

This study reports complete plastome sequences for six species of Neotropical Cranichideae and focuses on identification of the most variable regions (hotspots) in this group of orchids. These structure of these six plastomes is relatively conserved, exhibiting lengths ranging between 142,599 to 154,562 bp with 36.7% GC on average and exhibiting typical quadripartite arrangement (LSC, SSC and two IRs). Variation detected in the LSC/IR and SSC/IR junctions is explained by the loss of ndhF and ycf1 length variation. For the two genera of epiphytic clade in Spiranthinae, almost whole sets of the ndh-gene family were missing. Eight mutation hotspots were identified based on nucleotide diversity, sequence variability and parsimony-informative sites. Three of them (rps16-trnQ, trnT-trnL, rpl32-trnL) seem to be universal hotspots in the family, and the other five (trnG-trnR, trnR-atpA, trnP-psaJ, rpl32-infA, and rps15-ycf1) are described for the first time as orchid molecular hotspots. These regions have much more variation than all those used previously in phylogenetics of the group and offer useful plastid markers for phylogenetic, barcoding and population genetic studies. The use of whole plastomes or exclusive no-gap matrices also positioned with high support the holomycotrophic Rhizanthella among Orchidoideae plastomes in model-based analyses, showing the utility of plastomes for phylogenetic placement of this unusual genus.


Subject(s)
Gene Expression Regulation, Plant , Genetic Variation , Genome , Orchidaceae/genetics , Phylogeny , Plastids/genetics , Base Composition , Brazil , Chromosome Mapping , DNA Barcoding, Taxonomic/methods , Gene Ontology , Molecular Sequence Annotation , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Orchidaceae/classification , Orchidaceae/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Syst Biol ; 69(1): 91-109, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31127939

ABSTRACT

Disentangling phylogenetic relationships proves challenging for groups that have evolved recently, especially if there is ongoing reticulation. Although they are in most cases immediately isolated from diploid relatives, sets of sibling allopolyploids often hybridize with each other, thereby increasing the complexity of an already challenging situation. Dactylorhiza (Orchidaceae: Orchidinae) is a genus much affected by allopolyploid speciation and reticulate phylogenetic relationships. Here, we use genetic variation at tens of thousands of genomic positions to unravel the convoluted evolutionary history of Dactylorhiza. We first investigate circumscription and relationships of diploid species in the genus using coalescent and maximum likelihood methods, and then group 16 allotetraploids by maximum affiliation to their putative parental diploids, implementing a method based on genotype likelihoods. The direction of hybrid crosses is inferred for each allotetraploid using information from maternally inherited plastid RADseq loci. Starting from age estimates of parental taxa, the relative ages of these allotetraploid entities are inferred by quantifying their genetic similarity to the diploids and numbers of private alleles compared with sibling allotetraploids. Whereas northwestern Europe is dominated by young allotetraploids of postglacial origins, comparatively older allotetraploids are distributed further south, where climatic conditions remained relatively stable during the Pleistocene glaciations. Our bioinformatics approach should prove effective for the study of other naturally occurring, nonmodel, polyploid plant complexes.


Subject(s)
Orchidaceae/classification , Orchidaceae/genetics , Phylogeny , Diploidy , Europe , Tetraploidy
20.
BMC Plant Biol ; 19(1): 543, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31805856

ABSTRACT

BACKGROUND: Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences, this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade diversification in the genus. RESULTS: All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating, biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of clade diversification has sharply accelerated since the Miocene/Pliocene boundary. CONCLUSIONS: Our results provide important insights for clarifying some of the long-standing taxonomic debates in Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that large genome sizes may limit speciation.


Subject(s)
Biological Evolution , Genome, Plastid , Melanthiaceae/genetics , Phylogeny , Plant Dispersal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...