Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Nat Commun ; 14(1): 4290, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463962

ABSTRACT

Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.


Subject(s)
Antigen Presentation , Lipopolysaccharides , Animals , Mice , Endosomes/metabolism , Lipopolysaccharides/metabolism , Lysosomes/metabolism , Phagocytes
2.
iScience ; 26(6): 106910, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378323

ABSTRACT

Severe acute malnutrition (SAM) is a multifactorial disease affecting millions of children worldwide. It is associated with changes in intestinal physiology, microbiota, and mucosal immunity, emphasizing the need for multidisciplinary studies to unravel its full pathogenesis. We established an experimental model in which weanling mice fed a high-deficiency diet mimic key anthropometric and physiological features of SAM in children. This diet alters the intestinal microbiota (less segmented filamentous bacteria, spatial proximity to epithelium), metabolism (decreased butyrate), and immune cell populations (depletion of LysoDC in Peyer's patches and intestinal Th17 cells). A nutritional intervention leads to a fast zoometric and intestinal physiology recovery but to an incomplete restoration of the intestinal microbiota, metabolism, and immune system. Altogether, we provide a preclinical model of SAM and have identified key markers to target with future interventions during the education of the immune system to improve SAM whole defects.

3.
Gut ; 72(6): 1115-1128, 2023 06.
Article in English | MEDLINE | ID: mdl-36175116

ABSTRACT

OBJECTIVE: In the management of patients with IBD, there is a need to identify prognostic markers and druggable biological pathways to improve mucosal repair and probe the efficacy of tumour necrosis factor alpha biologics. Vnn1 is a pantetheinase that degrades pantetheine to pantothenate (vitamin B5, a precursor of coenzyme A (CoA) biosynthesis) and cysteamine. Vnn1 is overexpressed by inflamed colonocytes. We investigated its contribution to the tolerance of the intestinal mucosa to colitis-induced injury. DESIGN: We performed an RNA sequencing study on colon biopsy samples from patients with IBD stratified according to clinical severity and modalities of treatment. We generated the VIVA mouse transgenic model, which specifically overexpresses Vnn1 on intestinal epithelial cells and explored its susceptibility to colitis. We developed a pharmacological mimicry of Vnn1 overexpression by administration of Vnn1 derivatives. RESULTS: VNN1 overexpression on colonocytes correlates with IBD severity. VIVA mice are resistant to experimentally induced colitis. The pantetheinase activity of Vnn1 is cytoprotective in colon: it enhances CoA regeneration and metabolic adaptation of colonocytes; it favours microbiota-dependent production of short chain fatty acids and mostly butyrate, shown to regulate mucosal energetics and to be reduced in patients with IBD. This prohealing phenotype is recapitulated by treating control mice with the substrate (pantethine) or the products of pantetheinase activity prior to induction of colitis. In severe IBD, the protection conferred by the high induction of VNN1 might be compromised because its enzymatic activity may be limited by lack of available substrates. In addition, we identify the elevation of indoxyl sulfate in urine as a biomarker of Vnn1 overexpression, also detected in patients with IBD. CONCLUSION: The induction of Vnn1/VNN1 during colitis in mouse and human is a compensatory mechanism to reinforce the mucosal barrier. Therefore, enhancement of vitamin B5-driven metabolism should improve mucosal healing and might increase the efficacy of anti-inflammatory therapy.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Colitis/metabolism , Colon/pathology , Intestinal Mucosa/metabolism , Inflammatory Bowel Diseases/genetics , Fatty Acids, Volatile/metabolism , Vitamins , Dextran Sulfate , Disease Models, Animal
4.
Cell Mol Life Sci ; 79(7): 355, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35678896

ABSTRACT

Thymically-derived Foxp3+ regulatory T cells (Treg) critically control immunological tolerance. These cells are generated in the medulla through high affinity interactions with medullary thymic epithelial cells (mTEC) expressing the Autoimmune regulator (Aire). Recent advances have revealed that thymic Treg contain not only developing but also recirculating cells from the periphery. Although Aire is implicated in the generation of Foxp3+ Treg, its role in the biology of recirculating Treg remains elusive. Here, we show that Aire regulates the suppressive signature of recirculating Treg independently of the remodeling of the medullary 3D organization throughout life where Treg reside. Accordingly, the adoptive transfer of peripheral Foxp3+ Treg in AireKO recipients led to an impaired suppressive signature upon their entry into the thymus. Furthermore, recirculating Treg from AireKO mice failed to attenuate the severity of multiorgan autoimmunity, demonstrating that their suppressive function is altered. Using bone marrow chimeras, we reveal that mTEC-specific expression of Aire controls the suppressive signature of recirculating Treg. Finally, mature mTEC lacking Aire were inefficient in stimulating peripheral Treg both in polyclonal and antigen-specific co-culture assays. Overall, this study demonstrates that Aire confers to mTEC the ability to restimulate recirculating Treg, unravelling a novel function for this master regulator in Treg biology.


Subject(s)
Immune Tolerance , T-Lymphocytes, Regulatory , Animals , Autoimmunity , Epithelial Cells/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice , Thymus Gland
5.
Front Immunol ; 12: 676010, 2021.
Article in English | MEDLINE | ID: mdl-34108972

ABSTRACT

Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that affects predominately salivary and lacrimal glands. SS can occur alone or in combination with another autoimmune disease like systemic lupus erythematosus (SLE). Here we report that TLR7 signaling drives the development of SS since TLR8-deficient (TLR8ko) mice that develop lupus due to increased TLR7 signaling by dendritic cells, also develop an age-dependent secondary pathology similar to associated SS. The SS phenotype in TLR8ko mice is manifested by sialadenitis, increased anti-SSA and anti-SSB autoantibody production, immune complex deposition and increased cytokine production in salivary glands, as well as lung inflammation. Moreover, ectopic lymphoid structures characterized by B/T aggregates, formation of high endothelial venules and the presence of dendritic cells are formed in the salivary glands of TLR8ko mice. Interestingly, all these phenotypes are abrogated in double TLR7/8-deficient mice, suggesting that the SS phenotype in TLR8-deficient mice is TLR7-dependent. In addition, evaluation of TLR7 and inflammatory markers in the salivary glands of primary SS patients revealed significantly increased TLR7 expression levels compared to healthy individuals, that were positively correlated to TNF, LT-α, CXCL13 and CXCR5 expression. These findings establish an important role of TLR7 signaling for local and systemic SS disease manifestations, and inhibition of such will likely have therapeutic value.


Subject(s)
Sjogren's Syndrome/etiology , Toll-Like Receptor 7/physiology , Adult , Aged , Animals , Chemokines/genetics , Cytokines/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Pneumonia/etiology , Signal Transduction/physiology , Sjogren's Syndrome/immunology
6.
Nature ; 594(7861): 94-99, 2021 06.
Article in English | MEDLINE | ID: mdl-34012116

ABSTRACT

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Regeneration , Sensory Receptor Cells/metabolism , Wound Healing , Animals , Cell Survival , Cytokines/deficiency , Disease Models, Animal , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/prevention & control , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Interleukin-10/biosynthesis , Interleukin-10/metabolism , Macrophages/radiation effects , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Sensory Receptor Cells/radiation effects , Skin/pathology , Skin/radiation effects , Sunburn/complications , Sunburn/etiology , Sunburn/metabolism , Sunburn/pathology , Ultraviolet Rays/adverse effects
7.
Life Sci Alliance ; 4(2)2021 02.
Article in English | MEDLINE | ID: mdl-33443099

ABSTRACT

In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-ß expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.


Subject(s)
Activating Transcription Factor 4/metabolism , Dendritic Cells/metabolism , Proteostasis , Signal Transduction , eIF-2 Kinase/metabolism , Actins/chemistry , Actins/metabolism , Animals , Antigens/immunology , Cell Movement/genetics , Cytokines , Dendritic Cells/immunology , Gene Knockdown Techniques , Lipopolysaccharides/immunology , Membrane Proteins/metabolism , Mice , Phosphorylation , Protein Multimerization , Spleen/metabolism , Subtilisins/metabolism , eIF-2 Kinase/genetics
8.
Cell Rep ; 31(1): 107479, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268097

ABSTRACT

The monocyte-derived phagocytes termed LysoDCs are hallmarks of Peyer's patches, where their main function is to sample intestinal microorganisms. Here, we study their differentiation pathways in relation with their sampling, migratory, and T cell-priming abilities. Among four identified LysoDC differentiation stages displaying similar phagocytic activity, one is located in follicles, and the others reside in subepithelial domes (SED), where they proliferate and mature as they get closer to the epithelium. Mature LysoDCs but not macrophages express a gene set in common with conventional dendritic cells and prime naive helper T cells in vitro. At steady state, they do not migrate into naive T cell-enriched interfollicular regions (IFRs), but upon stimulation, they express the chemokine receptor CCR7 and migrate from SED to the IFR periphery, where they strongly interact with proliferative immune cells. Finally, we show that LysoDCs populate human Peyer's patches, strengthening their interest as targets for modulating intestinal immunity.


Subject(s)
Cell Differentiation/immunology , Peyer's Patches/cytology , Phagocytes/cytology , Animals , Cell Movement/immunology , Dendritic Cells/immunology , Female , Humans , Intestinal Mucosa/metabolism , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Monocytes/immunology , Phagocytes/metabolism , T-Lymphocytes/immunology
9.
J Exp Med ; 217(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32045472

ABSTRACT

In humans, psychological stress has been associated with a higher risk of infectious illness. However, the mechanisms by which the stress pathway interferes with host response to pathogens remain unclear. We demonstrate here a role for the ß2-adrenergic receptor (ß2-AR), which binds the stress mediators adrenaline and noradrenaline, in modulating host response to mouse cytomegalovirus (MCMV) infection. Mice treated with a ß2-AR agonist were more susceptible to MCMV infection. By contrast, ß2-AR deficiency resulted in a better clearance of the virus, less tissue damage, and greater resistance to MCMV. Mechanistically, we found a correlation between higher levels of IFN-γ production by liver natural killer (NK) cells and stronger resistance to MCMV. However, the control of NK cell IFN-γ production was not cell intrinsic, revealing a cell-extrinsic downregulation of the antiviral NK cell response by adrenergic neuroendocrine signals. This pathway reduces host immune defense, suggesting that the blockade of the ß2-AR signaling could be used to increase resistance to infectious diseases.


Subject(s)
Cytomegalovirus Infections/immunology , Down-Regulation/immunology , Immunity, Innate/immunology , Receptors, Adrenergic, beta-2/immunology , Signal Transduction/immunology , Animals , Epinephrine/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Muromegalovirus/immunology , Norepinephrine/immunology
10.
Clin Infect Dis ; 70(11): 2405-2412, 2020 05 23.
Article in English | MEDLINE | ID: mdl-31309973

ABSTRACT

BACKGROUND: Etiological diagnosis is a key to therapeutic adaptation and improved prognosis, particularly for infections such as endocarditis. In blood culture-negative endocarditis (BCNE), 22% of cases remain undiagnosed despite an updated comprehensive syndromic approach. This prompted us to develop a new diagnostic approach. METHODS: Eleven valves from 10 BCNE patients were analyzed using a method that combines human RNA bait-depletion with phi29 DNA polymerase-based multiple displacement amplification and shotgun DNA sequencing. An additional case in which a microbe was serendipitously visualized by immunofluorescence was analyzed using the same method, but after laser capture microdissection. RESULTS: Background DNA prevented any diagnosis in cases analyzed without microdissection because the majority of sequences were contaminants. Moraxella sequences were dramatically enriched in the stained microdissected region of the additional case. A consensus genome sequence of 2.4 Mbp covering more than 94% of the Moraxella osloensis KSH reference genome was reconstructed with 234X average coverage. Several antibiotic-resistance genes were observed. Etiological diagnosis was confirmed using Western blot and specific polymerase chain reaction with sequencing on a different valve sample. CONCLUSIONS: Microdissection could be a key to the metagenomic diagnosis of infectious diseases when a microbe is visualized but remains unidentified despite an updated optimal approach. Moraxella osloensis should be tested in blood culture-negative endocarditis.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Blood Culture , Endocarditis/diagnosis , Endocarditis, Bacterial/diagnosis , Humans , Metagenomics , Moraxella
11.
J Neuroinflammation ; 16(1): 191, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31660979

ABSTRACT

BACKGROUND: Targeting angiogenesis has been and continues to be an attractive therapeutic modality in glioblastoma (GBM) patients. However, GBM rapidly becomes refractory to anti-VEGF therapies. Myeloid cell infiltration is an important determinant of tumor progression. Given that VEGF is a modulator of the innate immune response we sought to analyze the dynamics of this response in a mouse model of GBM undergoing anti-VEGF therapy. METHODS: We grafted GL261-DsRed cells in transgenic Thy1-CFP//LysM-EGFP//CD11c-EYFP reporter mice. We combined recurrent spectral two-photon imaging with multiparametric cytometry, immunostaining, and brain clearing to characterize at two critical stages of tumor development (day 21 and day 28 after tumor grafting) the nature and spatial distribution of the innate response in control and bevacizumab-treated mice. RESULTS: We report that at an early stage (21 day), VEGF blockade has a detectable effect on the number of microglial cells but only a mild effect on the number of infiltrating myeloid cells. At a later stage (day 28), the treatment resulted in a specific adjustment of dendritic cell subsets. In treated mice, the number of monocytes and their monocyte-derived dendritic cells (moDC) progeny was increased by approximately twofold compared to untreated mice. In agreement, by in vivo quantitative imaging, we observed that treatment increased the number of LysM-EGFP cells traveling in tumor blood vessels and doubled the densities of both infiltrated LysM-EGFP monocytes and double-labeled EGFP/EYFP moDC. The treatment also led to an increased density of conventional cDCs2 subset together with a decrease of cDCs1 subset, necessary for the development of anti-tumor immunity. Finally, we describe differential spatial cell distributions and two immune cell-traveling routes into the brain. LysM-EGFP cells distributed as a gradient from the meninges towards the tumor whereas CD11c-EYFP/MHCII+ cells were located in the basal area of the tumor. Brain clearing also revealed a flow of CD11c-EYFP cells following the corpus callosum. CONCLUSION: We uncovered new features in the dynamics of innate immune cells in GBM-bearing mice and deciphered precisely the key populations, i.e., DC subsets controlling immune responses, that are affected by VEGF blockade. Since despite differences, human pathogenesis presents similarities with our mouse model, the data provide new insights into the effect of bevacizumab at the cellular level.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Burden/drug effects , Tumor Burden/physiology , Xenograft Model Antitumor Assays/methods
12.
iScience ; 21: 68-83, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31655257

ABSTRACT

Computed tomography is a powerful medical imaging modality for longitudinal studies in cancer to follow neoplasia progression and evaluate anticancer therapies. Here, we report the generation of a photon-counting micro-computed tomography (PC-CT) method based on hybrid pixel detectors with enhanced sensitivity and precision of tumor imaging. We then applied PC-CT for longitudinal imaging in a clinically relevant liver cancer model, the Alb-R26Met mice, and found a remarkable heterogeneity in the dynamics for tumors at the initiation phases. Instead, the growth curve of evolving tumors exhibited a comparable exponential growth, with a constant doubling time. Furthermore, longitudinal PC-CT imaging in mice treated with a combination of MEK and BCL-XL inhibitors revealed a drastic tumor regression accompanied by a striking remodeling of macrophages in the tumor microenvironment. Thus, PC-CT is a powerful system to detect cancer initiation and progression, and to monitor its evolution during treatment.

13.
Front Immunol ; 10: 2015, 2019.
Article in English | MEDLINE | ID: mdl-31552019

ABSTRACT

Systemic lupus erythematosus (SLE) patients have increased prevalence of metabolic syndrome but the underlying mechanisms are unknown. Toll-like receptor 7 (TLR7) that detects single stranded-RNA plays a key role in antimicrobial host defense and also contributes to the initiation and progression of SLE both in mice and humans. Here, we report the implication of TLR7 signaling in high fat diet (HFD)-induced metabolic syndrome and exacerbation of lupus autoimmunity in TLR8-deficient (TLR8ko) mice, which develop spontaneous lupus-like disease due to increased TLR7 signaling by dendritic cells (DCs). The aggravated SLE pathogenesis in HFD-fed TLR8ko mice was characterized by increased overall immune activation, anti-DNA autoantibody production, and IgG/IgM glomerular deposition that were coupled with increased kidney histopathology. Moreover, upon HFD TLR8ko mice developed metabolic abnormalities, including liver inflammation. In contrast, upon HFD TLR7/8ko mice did not develop SLE and both TLR7ko and TLR7/8ko mice were fully protected from metabolic abnormalities, including body weight gain, insulin resistance, and liver inflammation. Interestingly, HFD led to an increase of TLR7 expression in WT mice, that was coupled with increased TNF production by DCs, and this phenotype was more profound in TLR8ko mice. Our study uncovers the implication of TLR7 signaling in the interconnection of SLE and metabolic abnormalities, indicating that TLR7 might be a novel approach as a tailored therapy in SLE and metabolic diseases.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Obesity/immunology , Signal Transduction/immunology , Toll-Like Receptor 7/immunology , Animals , Antibodies, Antinuclear/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Diet, High-Fat/adverse effects , Humans , Insulin Resistance/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Signal Transduction/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/immunology , Toll-Like Receptor 8/metabolism , Weight Gain/immunology
14.
Cell Rep ; 26(12): 3257-3271.e8, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30893599

ABSTRACT

In the bone marrow, CXCL12 and IL-7 are essential for B cell differentiation, whereas hematopoietic stem cell (HSC) maintenance requires SCF and CXCL12. Peri-sinusoidal stromal (PSS) cells are the main source of IL-7, but their characterization as a pro-B cell niche remains limited. Here, we characterize pro-B cell supporting stromal cells and decipher the interaction network allowing pro-B cell retention. Preferential contacts are found between pro-B cells and PSS cells, which homogeneously express HSC and B cell niche genes. Furthermore, pro-B cells are frequently located in the vicinity of HSCs in the same niche. Using an interactome bioinformatics pipeline, we identify Nidogen-1 as essential for pro-B cell retention in the peri-sinusoidal niche as confirmed in Nidogen-1-/- mice. Finally, human pro-B cells and hematopoietic progenitors are observed close to similar IL-7+ stromal cells. Thus, a multispecific niche exists in mouse and human supporting both early progenitors and committed hematopoietic lineages.


Subject(s)
Hematopoietic Stem Cells/immunology , Membrane Glycoproteins/immunology , Precursor Cells, B-Lymphoid/immunology , Stem Cell Niche/immunology , Animals , Hematopoietic Stem Cells/cytology , Interleukin-7/genetics , Interleukin-7/immunology , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Precursor Cells, B-Lymphoid/cytology , Stromal Cells/cytology , Stromal Cells/immunology
15.
Life Sci Alliance ; 1(4): e201800073, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30456364

ABSTRACT

Like other tumors, aggressive soft tissue sarcomas (STS) use glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS) for growth. Given the importance of the cofactor coenzyme A (CoA) in energy metabolism, we investigated the impact of Vnn1 pantetheinase-an enzyme that degrades pantetheine into pantothenate (vitamin B5, the CoA biosynthetic precursor) and cysyteamine-on tumor growth. Using two models, we show that Vnn1+ STS remain differentiated and grow slowly, and that in patients a detectable level of VNN1 expression in STS is associated with an improved prognosis. Increasing pantetheinase activity in aggressive tumors limits their growth. Using combined approaches, we demonstrate that Vnn1 permits restoration of CoA pools, thereby maintaining OXPHOS. The simultaneous production of cysteamine limits glycolysis and release of lactate, resulting in a partial inhibition of STS growth in vitro and in vivo. We propose that the Warburg effect observed in aggressive STS is reversed by induction of Vnn1 pantetheinase and the rewiring of cellular energy metabolism by its products.

16.
Nat Immunol ; 19(9): 954-962, 2018 09.
Article in English | MEDLINE | ID: mdl-30127438

ABSTRACT

Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. After infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids. However, the pleiotropic effects of these steroid hormones make it difficult to delineate their precise role(s) in vivo. Here we found that the regulation of natural killer (NK) cell function by the glucocorticoid receptor (GR) was required for host survival after infection with mouse cytomegalovirus (MCMV). Mechanistically, endogenous glucocorticoids produced shortly after infection induced selective and tissue-specific expression of the checkpoint receptor PD-1 on NK cells. This glucocorticoid-PD-1 pathway limited production of the cytokine IFN-γ by spleen NK cells, which prevented immunopathology. Notably, this regulation did not compromise viral clearance. Thus, the fine tuning of NK cell functions by the HPA axis preserved tissue integrity without impairing pathogen elimination, which reveals a novel aspect of neuroimmune regulation.


Subject(s)
Glucocorticoids/metabolism , Herpesviridae Infections/immunology , Killer Cells, Natural/physiology , Muromegalovirus/physiology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Cells, Cultured , Female , Hypothalamo-Hypophyseal System , Immunity, Innate , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroimmunomodulation , Organ Specificity , Pituitary-Adrenal System , Receptors, Glucocorticoid/genetics , Signal Transduction , Viral Load
17.
Sci Signal ; 11(514)2018 01 23.
Article in English | MEDLINE | ID: mdl-29363586

ABSTRACT

Endoplasmic reticulum (ER) stress triggers or amplifies inflammatory signals and cytokine production in immune cells. Upon the resolution of ER stress, the inducible phosphatase 1 cofactor GADD34 promotes the dephosphorylation of the initiation factor eIF2α, thereby enabling protein translation to resume. Several aminoguanidine compounds, such as guanabenz, perturb the eIF2α phosphorylation-dephosphorylation cycle and protect different cell or tissue types from protein misfolding and degeneration. We investigated how pharmacological interference with the eIF2α pathway could be beneficial to treat autoinflammatory diseases dependent on proinflammatory cytokines and type I interferons (IFNs), the production of which is regulated by GADD34 in dendritic cells (DCs). In mouse and human DCs and B cells, guanabenz prevented the activation of Toll-like receptor 9 (TLR9) by CpG oligodeoxynucleotides or DNA-immunoglobulin complexes in endosomes. In vivo, guanabenz protected mice from CpG oligonucleotide-dependent cytokine shock and decreased autoimmune symptom severity in a chemically induced model of systemic lupus erythematosus. However, we found that guanabenz exerted its inhibitory effect independently of GADD34 activity on eIF2α and instead decreased the abundance of CH25H, a cholesterol hydroxylase linked to antiviral immunity. Our results therefore suggest that guanabenz and similar compounds could be used to treat type I IFN-dependent pathologies and that CH25H could be a therapeutic target to control these diseases.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Guanabenz/pharmacology , Protein Phosphatase 1/metabolism , Toll-Like Receptor 9/antagonists & inhibitors , Animals , Antihypertensive Agents/pharmacology , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Endoplasmic Reticulum Stress , Gene Expression Regulation , Humans , Liver Diseases/drug therapy , Liver Diseases/etiology , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Protein Phosphatase 1/genetics
18.
Cell Rep ; 21(9): 2515-2527, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186688

ABSTRACT

The spleen plays an important role in protective immunity to bloodborne pathogens. Macrophages and dendritic cells (DCs) in the spleen marginal zone capture microbial antigens to trigger adaptive immune responses. Marginal zone macrophages (MZMs) can also act as a replicative niche for intracellular pathogens, providing a platform for mounting the immune response. Here, we describe a role for RANK in the coordinated function of antigen-presenting cells in the spleen marginal zone and triggering anti-viral immunity. Targeted deletion of RANK results in the selective loss of CD169+ MZMs, which provide a niche for viral replication, while RANK signaling in DCs promotes the recruitment and activation of anti-viral memory CD8 T cells. These studies reveal a role for the RANKL/RANK signaling axis in the orchestration of protective immune responses in the spleen marginal zone that has important implications for the host response to viral infection and induction of acquired immunity.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , NF-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Animals , Dendritic Cells/metabolism , Flow Cytometry , Immunity, Innate/physiology , Macrophages/metabolism , Mice , Sialic Acid Binding Ig-like Lectin 1/metabolism , Signal Transduction/physiology , Spleen/metabolism
19.
Front Immunol ; 8: 679, 2017.
Article in English | MEDLINE | ID: mdl-28659918

ABSTRACT

Multi-organ failure in response to uncontrolled microbial infection is characterized by low blood pressure accompanied by a systemic over-inflammation state, caused by massive pro-inflammatory cytokines release and liver damage. Recently, the integrated stress response (ISR), characterized by eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, was involved with controlling apoptosis in stressed hepatocytes and associated with poor survival to endotoxin challenge. Lipopolysaccharide (LPS) alone is able to induce the ISR in hepatocytes and can trigger massive liver damage along with tumor necrosis factor-alpha (TNF-α) expression. Consequently, drugs interfering with eIF2α phosphorylation may represent potential candidates for the treatment of such pathologies. We, therefore, used Guanabenz (GBZ), a small compound with enhancing eIF2α phosphorylation activity to evaluate its effect on bacterial LPS sensing and endotoxemia. GBZ is confirmed here to have an anti-inflammatory activity by increasing in vitro interleukin-10 (IL-10) production by LPS-stimulated dendritic cells. We further show that in the d-galactosamine (d-galN)/LPS-dependent lethality model, intraperitoneal injection of GBZ promoted mice survival, prevented liver damage, increased IL-10 levels, and inhibited TNF-α production. GBZ and its derivatives could therefore represent an interesting pharmacological solution to control systemic inflammation and associated acute liver failure.

20.
Biochim Biophys Acta ; 1862(4): 662-669, 2016 04.
Article in English | MEDLINE | ID: mdl-26850476

ABSTRACT

BACKGROUND AND AIMS: Pretreatment with clofibrate, a peroxisome proliferator-activated receptor alpha (PPARa) agonist, protects mice from acetaminophen (APAP) injury. Protection is not due to alterations in APAP metabolism and is dependent on PPARa expression. Gene array analysis revealed that mice receiving clofibrate have enhanced hepatic Vanin-1 (Vnn1) gene expression, a response that is also PPARa dependent. METHODS: We examined the role of Vnn1 by comparing the responses of Vnn1 knockout and wild-type mice following APAP hepatotoxicity. APAP metabolism, hepatotoxicity, and compensatory hepatocyte proliferation and immune responses were assessed. RESULTS: Vnn1 knockout mice are more susceptible to APAP hepatotoxicity despite no differences in hepatic glutathione content, gene expression of APAP metabolizing enzymes, or hepatic capacity to bioactivate or detoxify APAP ex vivo. Together, these data strongly suggest that the susceptibility of Vnn1 knockout mice is not due to differences in APAP metabolism. Immunochemistry revealed a lack of proliferating cell nuclear antigen-positive hepatocytes and F4/80-positive macrophages in and around areas of centrilobular necrosis in APAP-treated Vnn1 knockouts. Hepatic gene induction of pro-inflammatory cytokines was either significantly reduced or completely blunted in these mice. This was correlated with a reduction in early recruitment of cells positive for granulocyte differentiation antigen 1 or integrin alpha M. Heightened toxicity was also observed in CCl4 and ConA hepatitis models in the absence of Vnn1. CONCLUSIONS: These results indicate that mice lacking Vnn1 have deficiencies in compensatory repair and immune responses following toxic APAP exposure and that these mechanisms may contribute to the enhanced hepatotoxicity seen.


Subject(s)
Acetaminophen/adverse effects , Amidohydrolases/deficiency , Cell Proliferation/drug effects , Chemical and Drug Induced Liver Injury/immunology , Liver/immunology , Acetaminophen/pharmacology , Amidohydrolases/immunology , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Clofibrate/pharmacology , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/immunology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Hepatocytes/immunology , Hepatocytes/pathology , Liver/pathology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , PPAR alpha/genetics , PPAR alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...