Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Affect Comput ; 14(4): 3388-3395, 2023.
Article in English | MEDLINE | ID: mdl-38107015

ABSTRACT

Two people's physiological responses become more similar as those people talk or cooperate, a phenomenon called physiological synchrony. The degree of synchrony correlates with conversation engagement and cooperation quality, and could thus be used to characterize interpersonal interaction. In this study, we used a combination of physiological synchrony metrics and pattern recognition algorithms to automatically classify four different dyadic conversation scenarios: two-sided positive conversation, two-sided negative conversation, and two one-sided scenarios. Heart rate, skin conductance, respiration and peripheral skin temperature were measured from 16 dyads in all four scenarios, and individual as well as synchrony features were extracted from them. A two-stage classifier based on stepwise feature selection and linear discriminant analysis achieved a four-class classification accuracy of 75.0% in leave-dyad-out crossvalidation. Removing synchrony features reduced accuracy to 65.6%, indicating that synchrony is informative. In the future, such classification algorithms may be used to, e.g., provide real-time feedback about conversation mood to participants, with applications in areas such as mental health counseling and education. The approach may also generalize to group scenarios and adjacent areas such as cooperation and competition.

2.
Front Neurosci ; 15: 757381, 2021.
Article in English | MEDLINE | ID: mdl-34764854

ABSTRACT

Physiological responses of two interacting individuals contain a wealth of information about the dyad: for example, the degree of engagement or trust. However, nearly all studies on dyadic physiological responses have targeted group-level analysis: e.g., correlating physiology and engagement in a large sample. Conversely, this paper presents a study where physiological measurements are combined with machine learning algorithms to dynamically estimate the engagement of individual dyads. Sixteen dyads completed 15-min naturalistic conversations and self-reported their engagement on a visual analog scale every 60 s. Four physiological signals (electrocardiography, skin conductance, respiration, skin temperature) were recorded, and both individual physiological features (e.g., each participant's heart rate) and synchrony features (indicating degree of physiological similarity between two participants) were extracted. Multiple regression algorithms were used to estimate self-reported engagement based on physiological features using either leave-interval-out crossvalidation (training on 14 60-s intervals from a dyad and testing on the 15th interval from the same dyad) or leave-dyad-out crossvalidation (training on 15 dyads and testing on the 16th). In leave-interval-out crossvalidation, the regression algorithms achieved accuracy similar to a 'baseline' estimator that simply took the median engagement of the other 14 intervals. In leave-dyad-out crossvalidation, machine learning achieved a slightly higher accuracy than the baseline estimator and higher accuracy than an independent human observer. Secondary analyses showed that removing synchrony features and personality characteristics from the input dataset negatively impacted estimation accuracy and that engagement estimation error was correlated with personality traits. Results demonstrate the feasibility of dynamically estimating interpersonal engagement during naturalistic conversation using physiological measurements, which has potential applications in both conversation monitoring and conversation enhancement. However, as many of our estimation errors are difficult to contextualize, further work is needed to determine acceptable estimation accuracies.

SELECTION OF CITATIONS
SEARCH DETAIL
...