Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 318: 115531, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35724573

ABSTRACT

Arsenic (As) is a highly poisonous heavy metal with major environmental ramifications. Inorganic components such as zinc (Zn) and iron (Fe), as well as organic vermicompost, have been used as management solutions, with limited attempts of using them together. The current study involved preparing non-enriched vermicompost as well as six distinct Zn and Fe enriched vermicomposts and analyzing their chemical composition using the standard procedures. Organic fractions from these seven vermicompost and arsenic polluted soils of West Bengal, India were recovered and separated into humic (HA) and fulvic acid (FA) fractions. Potentiometric titrations, viscometric assays, and visible spectrophotometry were used to characterize the HA and FA samples. In aqueous phase the stability constant (log K) of the complexes formed with As indicates that stability of FA extracted from enriched vermicompost V4 (Zn and Fe sulphate @ 10% w/w dry weight basis of composting substrates before application of vermiworms) was maximum as 10.20 with a mole ratio (x) value of 1.36. Fourier-transform infrared (FT-IR) spectroscopy and Scanning Electron Microscopy (SEM) studies confirmed the complexation of As with HA/FA. The release isotherm of As from the HA/FA complexes in the presence of competitive oxy-anions was found to follow the order of sulphate > nitrate > phosphate.


Subject(s)
Arsenic , Humic Substances , Arsenic/chemistry , Benzopyrans/chemistry , Humic Substances/analysis , Iron/chemistry , Organic Chemicals , Soil , Spectroscopy, Fourier Transform Infrared , Sulfates , Zinc
2.
ACS Omega ; 7(1): 1428-1436, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036804

ABSTRACT

A Co(III) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) (Scheme-1) having the molecular formula CoQ3 (Scheme-2) was prepared and characterized by elemental analysis, FTIR spectroscopy, UV-vis spectroscopy, fluorescence spectroscopy, and mass spectrometry. In the absence of a single crystal, the energy-optimized molecular structure of CoQ3 was determined by employing computational methods that was validated using spectroscopic evidences, elemental analysis, and mass spectrometry data. The electrochemical properties of the complex were analyzed using cyclic voltammetry and indicate a substantial modification of the electrochemical properties of the parent amino-hydroxy-9,10-anthraquinone. CoQ3 was thereafter tested on MCF-7 human breast cancer cells. The IC50 value for a 24 h incubation was found to be (95 ± 0.05) µg/mL. The study showed that such cancer cells underwent both early and late apoptosis following the interaction with CoQ3.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118256, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32217451

ABSTRACT

Polyvinyl-pyrrolidone capped spherical cadmium sulphide quantum dots (CdS-PVP QDs), 2-6 nm in size, were developed as a selective turn-on fluorescence nanosensor for monohydrogen phosphate ion (HPO42-) in aqueous medium. Fluorescence intensity of CdS-PVP QDs significantly increased with addition of HPO42- ions, whereas the other common inorganic ions had very little effect on the fluorescence intensity. The proposed sensor may be efficiently used for the detection of HPO42- ions at a low level of concentration up to 213 nM in real urine sample. Cell imaging study indicates that the CdS-PVP QDs are cell permeable and can detect the intracellular distribution of HPO42- ions under fluorescence microscope. The CdS-PVP QDs showed considerable activity against Staphylococcus aureus also.


Subject(s)
Anti-Infective Agents/pharmacology , Cadmium Compounds/chemistry , Cadmium Compounds/pharmacology , Phosphates/analysis , Povidone/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Sulfides/pharmacology , Density Functional Theory , Fluorescence , Humans , Hydrogen-Ion Concentration , Ions , Limit of Detection , Microbial Sensitivity Tests , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Powders , Salinity , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
4.
Article in English | MEDLINE | ID: mdl-31790335

ABSTRACT

Pollution of aquatic resources is increasing day-by-day, and phenolic compounds are common pollutants negatively impacting aquatic biodiversity and production. This study aimed at isolation of phenol hyper-tolerant bacteria from polluted aquaculture resource so that they might be useful in aquaculture systems. Four phenol hyper-tolerant bacterial strains were isolated from sewage fed East Kolkata Wetlands, a Ramsar site. By 16S rDNA sequence, cell morphology and biochemical characteristics the strains PDB2, PDB13, PDB16, and PDB26 were identified as Acinetobacter sp., Acinetobacter junii, Pseudomonas citronellolis, and Bacillus cereus, respectively. Pseudomonas citronellolis strain PDB16, described in this study, is possibly the first report of phenol hyper-tolerant strain in this species. All the four strains degraded 600 mg L-1 phenol within 5 days and expressed catechol 1,2-dioxygenase but lacked catechol 2,3-dioxygenase enzyme suggesting that the bacteria used the ortho-cleavage pathway for phenol degradation. In growth kinetic study Edwards and Aiba model, rather than the most popular Haldane model, gave the best fit indicating behavioral divergence of these strains with those from petroleum contaminated environments. The phenol degrading bacteria isolated from a polluted sewage fed aquaculture system might be useful in degradation and remediation of polluted aquaculture resources as well as inland open waters.


Subject(s)
Acinetobacter/isolation & purification , Adaptation, Physiological/drug effects , Aquaculture , Phenols/analysis , Pseudomonas/isolation & purification , Sewage/microbiology , Water Pollutants, Chemical/analysis , Acinetobacter/growth & development , Acinetobacter/metabolism , Biodegradation, Environmental , Kinetics , Pseudomonas/growth & development , Pseudomonas/metabolism
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117837, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31784221

ABSTRACT

A well designed, new pyrene based small molecule (L) was synthesized from 1:1 condensation reaction of 1-aminopyrene and 6-(1,3-benzodioxal-5-yl)-2-pyridine carboxaldehyde which was characterized by absorption, emission spectrometry, FTIR, NMR and mass studies. Interestingly the UV-vis and fluorescence spectroscopic studies revealed that the ligand (L) works as a dual turn-on luminescent chemosensor for chromium(III) (Cr3+) and aluminium(III) (Al3+) in aqueous environment which were further supported by DFT and TDDFT studies. L shows a significant colour change from pale yellow to reddish yellow with a detection limit of ~10-9 M in the presence of Cr3+ and Al3+ whereas there were no noteworthy changes in the presence of other monovalent and divalent metal ions. The molecular signaling in the presence of Cr3+, Al3+, Fe3+ and EDTA was compared with advanced level combinational INHIBIT gate based on 4 input logic gates. Herein, first derivative constant wavelength synchronous fluorescence spectroscopy (1st DCWSFS) was applied for the determination of Cr3+, Al3+ ion concentrations in a mixture via increment of spectral resolution of the respective overlapping peaks. 1st DCWSFS is reported to be used in pharmaceuticals but very few works have been done for determination of metal ion concentration in environmental sample without prior separation. The individual Cr3+and Al3+ ion concentrations in a mixture were determined through liquid-liquid extraction process and the efficiencies were compared with 1st derivative SFS method. It was observed that 1st derivative SFS process is more efficient than conventional liquid-liquid extraction process. Therefore, 1st DCWSFS method using sensor L might be useful as a diagnostic tool for detection of individual metal ion concentrations (Cr3+ and Al3+) from a mixture which will be cost-effective, time saving and more precise.

6.
Dalton Trans ; 48(13): 4362-4369, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30860539

ABSTRACT

A novel Co(ii)-complex {i.e. [Co(n-BuM)(DPA)(H2O)2]·H2O} [n-BuMH2 = n-butylmalonic acid and DPA = 2,2'-dipyridylamine] was synthesized. The supramolecular feature, i.e. a metal coordinated and free guest water mediated hydrogen-bonding interaction assisted supramolecular ππ assembly, has been observed in the crystal structure of the Co(ii)-complex in the solid state. The role of different water molecules (metal coordinated and free guest water molecules) had also been scrutinized via theoretical studies. The fluorescent nature of the aqueous solution of the Co(ii)-complex has been utilized for selective µM range toxic inorganic As(iii)-sensing in aqueous medium. The Co(ii)-probe is very specific towards toxic As(OH)3 even in the presence of several ions and other arsenic sources like inorganic As(v)-oxoanions and organic arsenic species like cacodylic acid. The bio-relevant nature of the fluorescent probe of the Co(ii)-complex has also been examined. The luminous Co(ii)-probe has been employed for the intracellular tracking of As(iii) in bacterial systems including As(iii)-resistant bacteria Bacillus aryabhattai and As(iii) non-resistant bacteria Bacillus subtilis.


Subject(s)
Arsenicals/analysis , Bacillus/chemistry , Cobalt/chemistry , Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Cacodylic Acid/chemistry , Hydrogen Bonding , Molecular Imaging/methods , Optical Imaging/methods , Water/chemistry
7.
Inorg Chem ; 57(17): 10802-10820, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30130107

ABSTRACT

Three new tetranuclear iron(III) and zinc(II) complexes, [Fe4(cpdp)2(phth)2(OH)2]·8H2O (1), [Fe4(cpdp)2(terephth)2(OH)2] (2), and [Zn4(Hcpdp)2(suc)]Br2·12H2O (3), have been synthesized as models for the active site of phosphoester hydrolases by utilizing a polydentate ligand, N, N'-bis[2-carboxybenzomethyl]- N, N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol (H3cpdp) in combination with exogeneous phthalate (phth), terephthalate (terephth), and succinate (suc). Single crystal X-ray analyses reveal that the metallic core of complex 1 consists of four distorted octahedral iron(III) ions with average intraligand Fe---Fe separation of 3.656(2) Å, while the structure 3 represents a tetranuclear metallic core containing four distorted trigonal bipyramidal zinc(II) ions with average intraligand Zn---Zn separation of 3.472(2) Å. The molecular structure of complex 2 has been optimized by the DFT method which shows that its core arrangement is similar to that of 1. Complex 1 has a very interesting centrosymmetric structure that includes two crystallographically equivalent [Fe2(cpdp)]3+ dinuclear units, connected together by a pair of syn-syn bridging phthalates and a pair of bridging hydroxides to generate a "dimer of dimers" structural motif. In complex 3, a succinate group connects two crystallographically equivalent [Zn2(Hcpdp)]2+ dinuclear units in a syn-syn bidentate manner forming a "dimer of dimers" structural design. All three complexes show phosphatase-like activity that has been examined in methanol-water (1:1; v/v) using bis( p-nitrophenyl) phosphate (BNPP) as model substrate by applying the UV-vis spectrophotometric technique. In each case, the kinetic data have been analyzed by the Michaelis-Menten approach. The order of catalytic efficiency for the conversion of substrate to product follows the trend 1 > 2 > 3 with turnover rates ( kcat) of (2.73 ± 0.13) × 10-5 for 1, (1.06 ± 0.07) × 10-5 for 2, and (2.33 ± 0.18) × 10-6 s-1 for 3. These kcat values are comparable to, albeit slightly lower than, the values reported for similar iron(III)- and zinc(II)-based model complexes in the literature. DFT calculations have been carried out to support the proposed mechanism for phosphatase-like activity.


Subject(s)
Coordination Complexes/chemistry , Coordination Complexes/metabolism , Iron/chemistry , Phosphoric Monoester Hydrolases/metabolism , Zinc/chemistry , Catalytic Domain , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Drug Stability , Hydrogen-Ion Concentration , Mass Spectrometry , Models, Molecular , Phosphoric Monoester Hydrolases/chemistry , Quantum Theory , Solutions/chemistry
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 204: 362-369, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-29957415

ABSTRACT

We investigated the reactivity of carbon monoxide on tetrahedral Ni4 clusters at different spin multiplicity applying density functional theory calculations considering pure and hybrid functional. The stability of the clusters increases with the increasing spin multiplicity and doping hydrogen in Ni4 cluster. The adsorption or binding energy of CO on Ni4 cluster is thermodynamically feasible process at normal condition whereas dissociation is not feasible. Ab initio molecular orbital analysis shows the orbital overlaps are observed at bridging site, three fold sites, and tetra coordinated centre and formation of δ-bond in the cluster. In NBO analysis, CO binds strongly to the Ni4 cluster not only by two NiC bond (spd hybrid), but also donor-acceptor delocalization interactions, for example, σ type BD(CO) → BD*(NiC) and BD(NiC) → BD*(NiC/CO), two π-type BD(CO) → LP*(Ni) and several diffuse RY*(C) ← LP(Ni) and π*(CO) ← LP(Ni) interactions. Singlet Ni4 cluster shows highest activation energy barrier, 3 eV. H-doped Ni4 cluster decreases dissociation barrier and favors CH bond formation.

9.
Colloids Surf B Biointerfaces ; 130: 215-21, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25936561

ABSTRACT

Visceral leishmaniasis (VL) is a fatal vector-borne parasitic syndrome attributable to the protozoa of the Leishmania donovani complex. The available chemotherapeutic options are not ideal due to their potential toxicity, high cost and prolonged treatment schedule. In the present study, we conjectured the use of nano drug delivery systems for plant-derived secondary metabolite; artemisinin as an alternative strategy for the treatment of experimental VL. Artemisinin-loaded poly lactic co-glycolic acid (ALPLGA) nanoparticles prepared were spherical in shape with a particle size of 220.0±15.0 nm, 29.2±2.0% drug loading and 69.0±3.3% encapsulation efficiency. ALPLGA nanoparticles administered at doses of 10 and 20mg/kg body weight showed superior antileishmanial efficacy compared with free artemisinin in BALB/c model of VL. There was a significant reduction in hepatosplenomegaly as well as in parasite load in the liver (85.0±5.4%) and spleen (82.0±2.4%) with ALPLGA nanoparticles treatment at 20mg/kg body weight compared to free artemisinin (70.3±0.6% in liver and 62.7±3.7% in spleen). In addition, ALPLGA nanoparticle treatment restored the defective host immune response in mice with established VL infection. The protection was associated with a Th1-biased immune response as evident from a positive delayed-type hypersensitivity reaction, escalated IgG2a levels, augmented lymphoproliferation and enhancement in proinflammatory cytokines (IFN-γ and IL-2) with significant suppression of Th2 cytokines (IL-10 and IL-4) after in vitro recall, compared to infected control and free artemisinin treatment. In conclusion, our results advocate superior efficacy of ALPLGA nanoparticles over free artemisinin, which was coupled with restoration of suppressed cell-mediated immunity in animal models of VL.


Subject(s)
Artemisinins/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Nanoparticles/chemistry , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Antibodies, Protozoan/blood , Artemisia/chemistry , Artemisinins/adverse effects , Artemisinins/chemistry , B7-1 Antigen/metabolism , Cell Proliferation/drug effects , Cytokines/metabolism , Female , Hypersensitivity, Delayed/chemically induced , Leishmania donovani/physiology , Leishmaniasis, Visceral/parasitology , Liver/drug effects , Liver/parasitology , Liver/pathology , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Nanoparticles/administration & dosage , Nanoparticles/ultrastructure , Organ Size/drug effects , Spleen/drug effects , Spleen/parasitology , Spleen/pathology , Treatment Outcome
10.
Biochim Biophys Acta ; 1850(4): 845-56, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25637716

ABSTRACT

BACKGROUND: Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. METHODS: Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS. RESULTS: The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 µg/mL for Escherichia coli and 180 and 195 µg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells. CONCLUSION: Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action. GENERAL SIGNIFICANCE: The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Copper/pharmacology , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Colloids , Cost-Benefit Analysis , Culture Media , Reactive Oxygen Species/metabolism
11.
Chem Commun (Camb) ; 50(96): 15263-6, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25347547

ABSTRACT

A highly selective femtomolar level sensing of inorganic arsenic(III) as arsenious acid has been accomplished in water medium and in living-systems (on pollen grains of Tecoma stans; Candida albicans cells (IMTECH No. 3018) and Peperomia pellucida stem section) using a non-toxic fluorescent probe of a Cu(II)-complex.


Subject(s)
Arsenic/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Bignoniaceae/chemistry , Bignoniaceae/metabolism , Candida albicans/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Microscopy, Fluorescence , Peperomia/chemistry , Peperomia/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Pollen/chemistry , Pollen/metabolism
12.
J Colloid Interface Sci ; 432: 258-69, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25086720

ABSTRACT

HYPOTHESIS: Artemisinin, a potential antileishmanial compound with poor bioavailability and stability has limited efficacy in visceral leishmaniasis. Encapsulating artemisinin into poly lactic-co glycolic nanoparticles may improve its effectiveness and reduce toxicity. EXPERIMENTS: Artemisinin-loaded nanoparticles were prepared, optimized (using Box-Behnken design) and characterized by dynamic light scattering technique, Atomic force microscopy (AFM), Transmission electron microscopy (TEM) and Fourier Transform-Infra Red spectroscopy. Release kinetics of artemisinin from optimized nanoformulation was studied by dialysis method at pH 7.4 and 5.5. Cytotoxicity and antileishmanial activity of these nanoparticles was tested on murine macrophages by MTT assay and macrophage-infested Leishmania donovani amastigotes ex vivo, respectively. FINDINGS: Artemisinin-loaded nanoparticles were 221±14nm in diameter, with polydispersity index, zeta potential, drug loading and entrapment efficiency of 0.1±0.015, -9.07±0.69mV, 28.03±1.14 and 68.48±1.97, respectively. AFM and TEM studies indicated that the particles were spherical in shape. These colloidal particles showed a sustained release pattern in vitro. Treatment with artemisinin-loaded nanoparticles significantly reduced the number of amastigotes per macrophage and percent infected macrophages ex vivo compared to free artemisinin. These nanoparticles were also non-toxic to macrophages compared to artemisinin alone.


Subject(s)
Antiprotozoal Agents , Artemisinins , Drug Delivery Systems , Lactic Acid , Leishmania donovani/growth & development , Leishmaniasis, Visceral/drug therapy , Polyglycolic Acid , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Female , Humans , Hydrogen-Ion Concentration , Lactic Acid/pharmacokinetics , Lactic Acid/pharmacology , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/pathology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred BALB C , Polyglycolic Acid/pharmacokinetics , Polyglycolic Acid/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer
13.
Nanotechnology ; 23(8): 085103, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22293320

ABSTRACT

A method for preparation of copper nanoparticles (Cu-NPs) was developed by simple reduction of CuCl2 in the presence of gelatin as a stabilizer and without applying stringent conditions like purging with nitrogen. The NPs were characterized by spectrophotometry, dynamic light scattering, x-ray diffraction, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The particles were about 50-60 nm in size and highly stable. The antibacterial activity of this Cu-NP on Gram-negative Escherichia coli was demonstrated by the methods of agar plating, flow cytometry and phase contrast microscopy. The minimum inhibitory concentration (3.0 µg ml(-1)), minimum bactericidal concentration (7.5 µg ml(-1)) and susceptibility constant (0.92) showed that this Cu-NP is highly effective against E. coli at a much lower concentration than that reported previously. Treatment with Cu-NPs made E. coli cells filamentous. The higher the concentration of Cu-NPs, the greater the population of filamentous cells; average filament size varied from 7 to 20 µm compared to the normal cell size of ∼2.5 µm. Both filamentation and killing of cells by Cu-NPs (7.5 µg ml(-1)) also occurred in an E. coli strain resistant to multiple antibiotics. Moreover, an antibacterial effect of Cu-NPs was also observed in Gram-positive Bacillus subtilis and Staphylococcus aureus, for which the values of minimum inhibitory concentration and minimum bactericidal concentration were close to that for E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL