Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 15(1): 1520, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374083

ABSTRACT

Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a ß-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a ß-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a ß-methyl fatty acid, bemeth#1, which mimics the activity of microbiota-dependent becyp#1 but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated ß-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , PPAR alpha/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acids/metabolism , Cyclopropanes/metabolism
3.
bioRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693574

ABSTRACT

Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression1-4, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a ß-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a ß-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a ß-methyl fatty acid, bemeth#1, whose activity mimics that of microbiota-dependent becyp#1, but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated ß-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.

4.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398385

ABSTRACT

Curtailed reproduction affects lifespan and fat metabolism in diverse organisms, suggesting a regulatory axis between these processes. In Caenorhabditis elegans, ablation of germline stem cells (GSCs) leads to extended lifespan and increased fat accumulation, suggesting GSCs emit signals that modulate systemic physiology. Previous studies mainly focused on the germline-less glp-1(e2141) mutant, however, the hermaphroditic germline of C. elegans provides an excellent opportunity to study the impact of different types of germline anomalies on longevity and fat metabolism. In this study, we compared the metabolomic, transcriptomic, and genetic pathway differences in three sterile mutants: germline-less glp-1, feminized fem-3, and masculinized mog-3. We found that although the three sterile mutants all accumulate excess fat and share expression changes in stress response and metabolism genes, the germline-less glp-1 mutant exhibits the most robust lifespan increase, whereas the feminized fem-3 mutant only lives longer at specific temperatures, and the masculinized mog-3 mutant lives drastically shorter. We demonstrated that overlapping but distinct genetic pathways are required for the longevity of the three different sterile mutants. Our data showed that disruptions of different germ cell populations result in unique and complex physiological and longevity consequences, highlighting exciting avenues for future investigations.

5.
Nat Commun ; 14(1): 320, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658169

ABSTRACT

Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Caenorhabditis elegans/metabolism , Metabolome , Caenorhabditis elegans Proteins/metabolism , Metabolomics/methods , Longevity
6.
PLoS Genet ; 17(9): e1009432, 2021 09.
Article in English | MEDLINE | ID: mdl-34506495

ABSTRACT

Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.


Subject(s)
Aging/genetics , Caenorhabditis elegans/genetics , Histones/genetics , Animals , Caenorhabditis elegans Proteins/genetics , Mutation , RNA/genetics , RNA/metabolism , Receptors, Notch/genetics , Retroelements , Stress, Physiological/genetics
7.
Elife ; 72018 05 01.
Article in English | MEDLINE | ID: mdl-29714684

ABSTRACT

C. elegans SET-9 and SET-26 are highly homologous paralogs that share redundant functions in germline development, but SET-26 alone plays a key role in longevity and heat stress response. Whereas SET-26 is broadly expressed, SET-9 is only detectable in the germline, which likely accounts for their different biological roles. SET-9 and SET-26 bind to H3K4me3 with adjacent acetylation marks in vitro and in vivo. In the soma, SET-26 acts through DAF-16 to modulate longevity. In the germline, SET-9 and SET-26 restrict H3K4me3 domains around SET-9 and SET-26 binding sites, and regulate the expression of specific target genes, with critical consequence on germline development. SET-9 and SET-26 are highly conserved and our findings provide new insights into the functions of these H3K4me3 readers in germline development and longevity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Gene Expression Regulation, Developmental , Germ Cells/cytology , Histones/metabolism , Longevity , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Gene Expression Profiling , Germ Cells/metabolism , Heat-Shock Response , Histones/genetics
8.
Aging Cell ; 16(4): 814-824, 2017 08.
Article in English | MEDLINE | ID: mdl-28560849

ABSTRACT

A decline in mitochondrial electron transport chain (ETC) function has long been implicated in aging and various diseases. Recently, moderate mitochondrial ETC dysfunction has been found to prolong lifespan in diverse organisms, suggesting a conserved and complex role of mitochondria in longevity determination. Several nuclear transcription factors have been demonstrated to mediate the lifespan extension effect associated with partial impairment of the ETC, suggesting that compensatory transcriptional response to be crucial. In this study, we showed that the transcription factors CEP-1/p53 and CEH-23 act through a similar mechanism to modulate longevity in response to defective ETC in Caenorhabditis elegans. Genomewide gene expression profiling comparison revealed a new link between these two transcription factors and AAK-2/AMP kinase (AMPK) signaling. Further functional analyses suggested that CEP-1/p53 and CEH-23 act downstream of AAK-2/AMPK signaling and CRTC-1 transcriptional coactivator to promote stress resistance and lifespan. As AAK-2, CEP-1, and CEH-23 are all highly conserved, our findings likely provide important insights for understanding the organismal adaptive response to mitochondrial dysfunction in diverse organisms and will be relevant to aging and pathologies with a mitochondrial etiology in human.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Homeodomain Proteins/genetics , Longevity/genetics , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Protein p53/genetics , AMP-Activated Protein Kinases , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Homeodomain Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
9.
Development ; 140(8): 1645-54, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23487310

ABSTRACT

Signals that promote germ cell self-renewal by preventing premature meiotic entry are well understood. However, signals that control mitotic proliferation to promote meiotic differentiation have not been well characterized. In Caenorhabditis elegans, GLP-1 Notch signalling promotes the proliferative fate by preventing premature meiotic entry. The germline niche cell, which is the source of the ligand for GLP-1, spatially restricts GLP-1 signalling and thus enables the germ cells that have moved away from the niche to enter meiosis. Here, we show that the suppression of RAS/MAP kinase signalling in the mitotic and meiotic-entry regions is essential for the regulation of the mitosis-meiosis switch by niche signalling. We provide evidence that the conserved PUF family RNA-binding protein PUF-8 and the RAS GAP protein GAP-3 function redundantly to suppress the LET-60 RAS in the mitotic and meiotic entry regions. Germ cells missing both PUF-8 and GAP-3 proliferate in an uncontrolled fashion and fail to undergo meiotic development. MPK-1, the MAP kinase downstream of the LET-60 RAS, is prematurely activated in these cells; downregulation of MPK-1 activation eliminates tumours and restores differentiation. Our results further reveal that PUF-8 negatively regulates LET-60 expression at a post-transcriptional step. LET-60 is misexpressed in the puf-8(-) mutant germlines and PUF-8 physically interacts with the let-60 3' UTR. Furthermore, PUF-8 suppresses let-60 3' UTR-mediated expression in the germ cells that are transitioning from the mitotic to meiotic fate. These results reveal that PUF-8-mediated inhibition of the RAS/MAPK pathway is essential for mitotic-to-meiotic fate transition.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Cell Differentiation/physiology , Germ Cells/physiology , Mitogen-Activated Protein Kinase 1/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction/physiology , ras Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans Proteins/genetics , Electrophoretic Mobility Shift Assay , Immunoprecipitation , Microscopy, Fluorescence , Mutagenesis , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL