Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Clin Genet ; 105(2): 173-184, 2024 02.
Article in English | MEDLINE | ID: mdl-37899624

ABSTRACT

Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.


Subject(s)
Intellectual Disability , Humans , Female , Intellectual Disability/genetics , Genes, X-Linked/genetics , Gene Duplication , X Chromosome Inactivation/genetics , Mutation
2.
Biomedicines ; 11(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38137484

ABSTRACT

Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.

4.
Neurol Genet ; 9(6): e200107, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38021397

ABSTRACT

Background and Objectives: Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common muscular dystrophy in the general population and is characterized by progressive and often asymmetric muscle weakness of the face, upper extremities, arms, lower leg, and hip girdle. In FSHD type 1, contraction of the number of D4Z4 repeats to 1-10 on the chromosome 4-permissive allele (4qA) results in abnormal epigenetic derepression of the DUX4 gene in skeletal muscle. In FSHD type 2, epigenetic derepression of the DUX4 gene on the permissive allele (4qA) with normal-sized D4Z4 repeats (mostly 8-20) is caused by heterozygous pathogenic variants in chromatin modifier genes such as SMCHD1, DNMT3B, or LRIF1. We present validation of the optical genome mapping (OGM) platform for accurate mapping of the D4Z4 repeat size, followed by diagnostic testing of 547 cases with a suspected clinical diagnosis of FSHD and next-generation sequencing (NGS) of the SMCHD1 gene to identify cases with FSHD2. Methods: OGM with Bionano Genomics Saphyr and EnFocus FSHD analysis software was used to identify FSHD haplotypes and D4Z4 repeat number and compared with the gold standard of Southern blot-based diagnosis. A custom Agilent SureSelect enrichment kit was used to enrich SMCHD1, followed by NGS on an Illumina system with 100-bp paired-end reads. Copy number variants were assessed using NxClinical software. Results: We performed OGM for the diagnosis of FSHD in 547 patients suspected of FSHD between December 2019 and December 2022, including 301 male (55%) and 246 female patients (45%). Overall, 308 of the referred patients were positive for D4Z4 contraction on a permissive haplotype, resulting in a diagnosis of FSHD1. A total of 252 of 547 patients were referred for concurrent testing for FSHD1 and FSHD2. This resulted in the identification of FSHD2 in 9/252 (3.6%) patients. In our FSHD2 cohort, the 4qA allele size ranged from 8 to 18 repeats. Among FSHD1-positive cases, 2 patients had biallelic contraction and 4 patients had homozygous contraction and showed early onset of clinical features. Nine of the 308 patients (3%) positive for 4qA contraction had mosaic 4q alleles with contraction on at least one 4qA allele. The overall diagnostic yield in our cohort was 58%. Discussion: A combination of OGM to identify the FSHD haplotype and D4Z4 repeat number and NGS to identify sequence and copy number variants in the SMCHD1 gene is a practical and cost-effective option with increased precision for accurate diagnosis of FSHD types 1 and 2.

5.
Curr Protoc ; 3(10): e910, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37888957

ABSTRACT

Optical genome mapping (OGM) is a next-generation cytogenomic technology that has the potential to replace standard-of-care technologies used in the genetic workup of various malignancies. The ability to detect various classes of structural variations that include copy number variations, deletions, duplications, balanced and unbalanced events (insertions, inversions, and translocation) and complex genomic rearrangements in a single assay and analysis demonstrates the utility of the technology in tumor research and clinical application. Herein, we provide the methodological details for performing OGM and pre- and post-analytical quality control (QC) checks and describe critical steps that should be performed with caution, probable causes for specific QC failures, and potential method modifications that could be implemented as part of troubleshooting. The protocol description and troubleshooting guide should help new and current users of the technology to improve or troubleshoot the problems (if any) in their workflow. © 2023 Wiley Periodicals LLC. Basic Protocol: Optical genome mapping.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Genome , Genomics/methods , Neoplasms/diagnosis , Neoplasms/genetics , Chromosome Mapping
6.
Genes (Basel) ; 14(10)2023 09 26.
Article in English | MEDLINE | ID: mdl-37895217

ABSTRACT

The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions. This study compares OGM to CMA for clinically reported genomic variants, some of these samples also have structural characterization by fluorescence in situ hybridization (FISH). OGM was performed on IRB approved, de-identified specimens from 55 individuals with genomic abnormalities previously identified by CMA (61 clinically reported abnormalities). SVs identified by OGM were filtered by a control database to remove polymorphic variants and against an established gene list to prioritize clinically relevant findings before comparing with CMA and FISH results. OGM results showed 100% concordance with CMA findings for pathogenic variants and 98% concordant for all pathogenic/likely pathogenic/variants of uncertain significance (VUS), while also providing additional insight into the genomic structure of abnormalities that CMA was unable to provide. OGM demonstrates equivalent performance to CMA for CNV and AOH detection, enhanced by its ability to determine the structure of the genome. This work adds to an increasing body of evidence on the analytical validity and ability to detect clinically relevant abnormalities identified by CMA. Moreover, OGM identifies translocations, structures of duplications and complex CNVs intractable by CMA, yielding additional clinical utility.


Subject(s)
Benchmarking , Developmental Disabilities , Child , Humans , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , In Situ Hybridization, Fluorescence , Karyotype , Chromosome Mapping
7.
Genes (Basel) ; 14(9)2023 08 25.
Article in English | MEDLINE | ID: mdl-37761823

ABSTRACT

Homologous recombination deficiency (HRD) is characterized by the inability of a cell to repair the double-stranded breaks using the homologous recombination repair (HRR) pathway. The deficiency of the HRR pathway results in defective DNA repair, leading to genomic instability and tumorigenesis. The presence of HRD has been found to make tumors sensitive to ICL-inducing platinum-based therapies and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi). However, there are no standardized methods to measure and report HRD phenotypes. Herein, we compare optical genome mapping (OGM), chromosomal microarray (CMA), and a 523-gene NGS panel for HRD score calculations. This retrospective study included the analysis of 196 samples, of which 10 were gliomas, 176 were hematological malignancy samples, and 10 were controls. The 10 gliomas were evaluated with both CMA and OGM, and 30 hematological malignancy samples were evaluated with both the NGS panel and OGM. To verify the scores in a larger cohort, 135 cases were evaluated with the NGS panel and 71 cases with OGM. The HRD scores were calculated using a combination of three HRD signatures that included loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transitions (LST). In the ten glioma cases analyzed with OGM and CMA using the same DNA (to remove any tumor percentage bias), the HRD scores (mean ± SEM) were 13.2 (±4.2) with OGM compared to 3.7 (±1.4) with CMA. In the 30 hematological malignancy cases analyzed with OGM and the 523-gene NGS panel, the HRD scores were 7.6 (±2.2) with OGM compared to 2.6 (±0.8) with the 523-gene NGS panel. OGM detected 70.8% and 66.8% of additional variants that are considered HRD signatures in gliomas and hematological malignancies, respectively. The higher sensitivity of OGM to capture HRD signature variants might enable a more accurate and precise correlation with response to PARPi and platinum-based drugs. This study reveals HRD signatures that are cryptic to current standard of care (SOC) methods used for assessing the HRD phenotype and presents OGM as an attractive alternative with higher resolution and sensitivity to accurately assess the HRD phenotype.


Subject(s)
Glioma , Hematologic Neoplasms , Humans , Retrospective Studies , Glioma/genetics , Pentosyltransferases , Poly(ADP-ribose) Polymerases , Homologous Recombination , Chromosome Mapping
8.
Cancers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37370824

ABSTRACT

The standard-of-care (SOC) for genomic testing of myeloid cancers primarily relies on karyotyping/fluorescent in situ hybridization (FISH) (cytogenetic analysis) and targeted gene panels (usually ≤54 genes) that harbor hotspot pathogenic variants (molecular genetic analysis). Despite this combinatorial approach, ~50% of myeloid cancer genomes remain cytogenetically normal, and the limited sequencing variant profiles obtained from targeted panels are unable to resolve the molecular etiology of many myeloid tumors. In this study, we evaluated the performance and clinical utility of combinatorial use of optical genome mapping (OGM) and a 523-gene next-generation sequencing (NGS) panel for comprehensive genomic profiling of 30 myeloid tumors and compared it to SOC cytogenetic methods (karyotyping and FISH) and a 54-gene NGS panel. OGM and the 523-gene NGS panel had an analytical concordance of 100% with karyotyping, FISH, and the 54-gene panel, respectively. Importantly, the IPSS-R cytogenetic risk group changed from very good/good to very poor in 22% of MDS (2/9) cases based on comprehensive profiling (karyotyping, FISH, and 54-gene panel vs. OGM and 523-gene panel), while additionally identifying six compound heterozygous events of potential clinical relevance in six cases (6/30, 20%). This cost-effective approach of using OGM and a 523-gene NGS panel for comprehensive genomic profiling of myeloid cancers demonstrated increased yield of actionable targets that can potentially result in improved clinical outcomes.

9.
J Mol Diagn ; 25(4): 234-246, 2023 04.
Article in English | MEDLINE | ID: mdl-36758723

ABSTRACT

The standard-of-care diagnostic prenatal testing includes a combination of cytogenetic methods, such as karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), using either direct or cultured amniocytes or chorionic villi sampling. However, each technology has its limitations: karyotyping has a low resolution (>5 Mb), FISH is targeted, and CMA does not detect balanced structural variations (SVs). These limitations necessitate the use of multiple tests, either simultaneously or sequentially, to reach a genetic diagnosis. Optical genome mapping (OGM) is an emerging technology that can detect several classes of SVs in a single assay, but it has not been evaluated in the prenatal setting. This validation study analyzed 114 samples that were received in our laboratory for traditional cytogenetic analysis with karyotyping, FISH, and/or CMA. OGM was 100% concordant in identifying the 101 aberrations that included 29 interstitial/terminal deletions, 28 duplications, 26 aneuploidies, 6 absence of heterozygosity regions, 3 triploid genomes, 4 isochromosomes, and 1 translocation; and the method revealed the identity of 3 marker chromosomes and 1 chromosome with additional material not determined by karyotyping. In addition, OGM detected 64 additional clinically reportable SVs in 43 samples. OGM has a standardized laboratory workflow and reporting solution that can be adopted in routine clinical laboratories and demonstrates the potential to replace the current standard-of-care methods for prenatal diagnostic testing.


Subject(s)
Aneuploidy , Chromosome Disorders , Pregnancy , Female , Humans , In Situ Hybridization, Fluorescence , Cytogenetic Analysis/methods , Karyotyping , Chromosome Mapping , Chromosome Aberrations , Prenatal Diagnosis/methods , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics
10.
Biomolecules ; 13(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36671517

ABSTRACT

Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , COVID-19/complications , COVID-19/genetics , Genetic Predisposition to Disease , Nervous System Diseases/genetics , Genotype
11.
Drug Chem Toxicol ; : 1-10, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36594462

ABSTRACT

7-Methylxanthine (7-MX, CAS No. 552-62-5, purity 99.46%) is the first orally administered drug candidate, which showed anti-myopic activity in different pre-clinical studies. In the present study, we investigated the in-vivo genotoxic and mutagenic toxicity of 7-MX in Wistar rats using comet/single-cell gel electrophoresis, chromosomal aberration and micronucleus assays after oral administration. For the single-dose study (72 h), two doses of 7-MX 300 and 2000 mg/kg body weight were selected. For a repeated dose 28 d study, three doses (250, 500, and 1000 mg/kg) of 7-MX were selected. The doses were administered via oral gavage in the suspension form. Blood and major vital organs such as bone marrow, lung and liver were used to perform comet/single cell gel electrophoresis, chromosomal aberration, and micronucleus assays. The in-vitro Ames test was performed on TA98 and TA100 strains. In the chromosomal aberration study, a non-significant increase in deformities such as stickiness, ring chromosome, and endoreduplication was observed in bone marrow cells of 7-MX treated groups. These chromosomal alterations were observed upon treatment with doses of 2000 mg/kg single dose for 72 h and 1000 mg/kg repeated dose for 28 d. At a dose of 500 mg/kg, DNA damage in terms of tail length, tail moment, % tail DNA and the olive tail moment was also found to be non-significant in 7-MX treated groups. The Ames test showed the non-mutagenic nature of 7-MX in both strains of TA98 and TA100 of Salmonella typhimurium with or without metabolic activation. Thus, the present work is interesting in view of the non- genotoxicity and non-mutagenicity of repeated doses of 7-MX.

12.
J Mol Diagn ; 24(12): 1279-1291, 2022 12.
Article in English | MEDLINE | ID: mdl-36265723

ABSTRACT

The current standard-of-care cytogenetic techniques for the analysis of hematological malignancies include karyotyping, fluorescence in situ hybridization, and chromosomal microarray, which are labor intensive and time and cost prohibitive, and they often do not reveal the genetic complexity of the tumor, demonstrating the need for alternative technology for better characterization of these tumors. Herein, we report the results from our clinical validation study and demonstrate the utility of optical genome mapping (OGM), evaluated using 92 sample runs (including replicates) that included 69 well-characterized unique samples (59 hematological neoplasms and 10 controls). The technical performance (quality control metrics) resulted in 100% first-pass rate, with analytical performance (concordance) showing a sensitivity of 98.7%, a specificity of 100%, and an accuracy of 99.2%. OGM demonstrated robust technical, analytical performance, and interrun, intrarun, and interinstrument reproducibility. The limit of detection was determined to be at 5% allele fraction for aneuploidy, translocation, interstitial deletion, and duplication. OGM identified several additional structural variations, revealing the genomic architecture in these neoplasms that provides an opportunity for better tumor classification, prognostication, risk stratification, and therapy selection. Overall, OGM has outperformed the standard-of-care tests in this study and demonstrated its potential as a first-tier cytogenomic test for hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Humans , In Situ Hybridization, Fluorescence , Reproducibility of Results , Karyotyping , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Chromosome Mapping , Chromosome Aberrations
13.
Genes (Basel) ; 13(4)2022 04 03.
Article in English | MEDLINE | ID: mdl-35456449

ABSTRACT

Conventional cytogenetic analysis of products of conception (POC) is of limited utility because of failed cultures, as well as microbial and maternal cell contamination (MCC). Optical genome mapping (OGM) is an emerging technology that has the potential to replace conventional cytogenetic methods. The use of OGM precludes the requirement for culturing (and related microbial contamination). However, a high percentage of MCC impedes a definitive diagnosis, which can be addressed by an additional pre-analytical quality control step that includes histological assessment of H&E stained slides from formalin-fixed paraffin embedded (FFPE) tissue with macro-dissection for chorionic villi to enrich fetal tissue component for single nucleotide polymorphism microarray (SNPM) analysis. To improve the diagnostic yield, an integrated workflow was devised that included MCC characterization of POC tissue, followed by OGM for MCC-negative cases or SNPM with histological assessment for MCC-positive cases. A result was obtained in 93% (29/31) of cases with a diagnostic yield of 45.1% (14/31) with the proposed workflow, compared to 9.6% (3/31) and 6.4% (2/31) with routine workflow, respectively. The integrated workflow with these technologies demonstrates the clinical utility and higher diagnostic yield in evaluating POC specimens.


Subject(s)
Fertilization , Polymorphism, Single Nucleotide , Chromosome Mapping/methods , Cytogenetic Analysis/methods , Microarray Analysis/methods
14.
Sci Rep ; 12(1): 3480, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241679

ABSTRACT

The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Limit of Detection , Reproducibility of Results
15.
iScience ; 25(2): 103760, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35036860

ABSTRACT

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.

16.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34696495

ABSTRACT

Two serious public health challenges have emerged in the current COVID-19 pandemic namely, deficits in SARS-CoV-2 variant monitoring and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak is required to understand the transmission of the virus. To address these challenges, we evaluated 533 samples using a high-throughput next-generation sequencing (NGS) respiratory viral panel (RVP) that includes 40 viral pathogens. The performance metrics revealed a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The clade for pangolin lineage B that contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF3a, and S84L in ORF8 covarying with the D614G spike protein mutation, were the most prevalent early in the pandemic in Georgia, USA. The isolates from the same county formed paraphyletic groups, indicating virus transmission between counties. The study demonstrates the clinical and public health utility of the NGS-RVP to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats and models that provide insights into viral transmission patterns and predict transmission/resurgence of regional outbreaks as well as providing critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/transmission , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Phylogeny , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
18.
Curr Issues Mol Biol ; 43(2): 958-964, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34449543

ABSTRACT

Background: Rolling-circle replication (RCR) is a novel technology that has not been applied to cell-free DNA (cfDNA) testing until recently. Given the cost and simplicity advantages of this technology compared to other platforms currently used in cfDNA analysis, an assessment of RCR in clinical laboratories was performed. Here, we present the first validation study from clinical laboratories utilizing RCR technology. Methods: 831 samples from spontaneously pregnant women carrying a singleton fetus, and 25 synthetic samples, were analyzed for the fetal risk of trisomy 21 (T21), trisomy 18 (T18) and trisomy 13 (T13), by three laboratories on three continents. All the screen-positive pregnancies were provided post-test genetic counseling and confirmatory diagnostic invasive testing (e.g., amniocentesis). The screen-negative pregnancies were routinely evaluated at birth for fetal aneuploidies, using newborn examinations, and any suspected aneuploidies would have been offered diagnostic testing or confirmed with karyotyping. Results: The study found rolling-circle replication to be a highly viable technology for the clinical assessment of fetal aneuploidies, with 100% sensitivity for T21 (95% CI: 82.35-100.00%); 100.00% sensitivity for T18 (71.51-100.00%); and 100.00% sensitivity for T13 analyses (66.37-100.00%). The specificities were >99% for each trisomy (99.7% (99.01-99.97%) for T21; 99.5% (98.62-99.85%) for T18; 99.7% (99.03-99.97%) for T13), along with a first-pass no-call rate of 0.93%. Conclusions: The study showed that using a rolling-circle replication-based cfDNA system for the evaluation of the common aneuploidies would provide greater accuracy and clinical utility compared to conventional biochemical screening, and it would provide comparable results to other reported cfDNA methodologies.


Subject(s)
Aneuploidy , Cell-Free Nucleic Acids/blood , Down Syndrome/diagnosis , High-Throughput Nucleotide Sequencing/methods , Noninvasive Prenatal Testing/methods , Trisomy 13 Syndrome/diagnosis , Trisomy 18 Syndrome/diagnosis , Adult , Cell-Free Nucleic Acids/genetics , Down Syndrome/genetics , Female , Humans , Middle Aged , Pregnancy , Trisomy 13 Syndrome/genetics , Trisomy 18 Syndrome/genetics , Young Adult
19.
Curr Issues Mol Biol ; 43(2): 845-867, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34449545

ABSTRACT

This review discusses the current testing methodologies for COVID-19 diagnosis and explores next-generation sequencing (NGS) technology for the detection of SARS-CoV-2 and monitoring phylogenetic evolution in the current COVID-19 pandemic. The review addresses the development, fundamentals, assay quality control and bioinformatics processing of the NGS data. This article provides a comprehensive review of the obstacles and opportunities facing the application of NGS technologies for the diagnosis, surveillance, and study of SARS-CoV-2 and other infectious diseases. Further, we have contemplated the opportunities and challenges inherent in the adoption of NGS technology as a diagnostic test with real-world examples of its utility in the fight against COVID-19.


Subject(s)
COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Computational Biology/methods , Humans , Molecular Epidemiology/methods , Pandemics , Phylogeny , SARS-CoV-2/isolation & purification
20.
Mol Cytogenet ; 14(1): 37, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261519

ABSTRACT

BACKGROUND: Copy-neutral absence of heterozygosity (CN-AOH) observed on a single chromosome or part of a chromosome may be indicative of uniparental disomy (UPD) and may require additional testing when such chromosomes or chromosome regions are known to harbor imprinted genes. CASE PRESENTATION: Here we report 2 cases of neonates that presented to clinic with hypotonia, poor oral skills including inability to feed by mouth, weak cry, no response to noxious stimulation and vertical plantar creases (case 1) and hypotonia and respiratory distress (case 2). A preliminary chromosome analysis showed normal karyotypes in both cases while the high-resolution single nucleotide polymorphism (SNP) microarray showed copy neutral absence of heterozygosity involving chromosome 15 distal long arm. In case 1, the CN-AOH involved a 28.7 Mb block from genomic coordinates 73703619_102429049. In case 2, the CN-AOH involved a 15.3 Mb block from genomic coordinates 54729197_70057534. In both cases, methylation-specific PCR did not detect an unmethylated allele for the SNRPN gene suggesting either a deletion of paternal allele or maternal UPD for chromosome 15. Since microarray analysis did not show any copy number alterations on chromosome 15, a microdeletion was ruled out. CONCLUSIONS: Based on our cases, we suggest that CN-AOH on chromosome 15, even if it does not involve the critical region of 15q12q13, should warrant additional studies for diagnosis of Prader-Willi/Angelman syndromes.

SELECTION OF CITATIONS
SEARCH DETAIL
...