Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8015): 141-148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778097

ABSTRACT

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Subject(s)
Dopaminergic Neurons , Fentanyl , Nucleus Accumbens , Receptors, Opioid, mu , Reinforcement, Psychology , Substance Withdrawal Syndrome , Ventral Tegmental Area , Animals , Fentanyl/pharmacology , Receptors, Opioid, mu/metabolism , Mice , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Substance Withdrawal Syndrome/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Dopamine/metabolism , Optogenetics , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/physiology , Female , Mice, Inbred C57BL , Opioid-Related Disorders/metabolism , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage
2.
Nature ; 595(7869): 690-694, 2021 07.
Article in English | MEDLINE | ID: mdl-34262175

ABSTRACT

Coping with threatening situations requires both identifying stimuli that predict danger and selecting adaptive behavioural responses to survive1. The dorsomedial prefrontal cortex (dmPFC) is a critical structure that is involved in the regulation of threat-related behaviour2-4. However, it is unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks to successfully drive adaptive responses. Here we used a combination of extracellular recordings, neuronal decoding approaches, pharmacological and optogenetic manipulations to show that, in mice, threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. Our data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations driven by the amygdala, it does not predict action outcome. By contrast, transient dmPFC population activity before the initiation of action reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of defensive responses relies on a dynamic process of information linking threats with defensive actions, unfolding within prefrontal networks.


Subject(s)
Avoidance Learning , Defense Mechanisms , Neurons/physiology , Prefrontal Cortex/physiology , Amygdala/physiology , Animals , Fear , Male , Mice , Mice, Inbred C57BL , Optogenetics
3.
Neuron ; 97(4): 898-910.e6, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29398355

ABSTRACT

Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process that is thought to depend on the prefrontal cortex to integrate sensory information from the environment and regulate adaptive responses to threat during uncertainty. However, the precise prefrontal circuits necessary for discriminating a previously threatening context from a neutral context remain unknown. Using a combination of single-unit recordings and optogenetic manipulations, we identified a neuronal subpopulation in the dorsal medial prefrontal cortex (dmPFC) that projects to the lateral and ventrolateral periaqueductal gray (l/vlPAG) and is selectively activated during contextual fear discrimination. Moreover, optogenetic activation and inhibition of this neuronal population promoted contextual fear discrimination and generalization, respectively. Our results identify a subpopulation of dmPFC-l/vlPAG-projecting neurons that control switching between different emotional states during contextual discrimination.


Subject(s)
Discrimination, Psychological/physiology , Fear/physiology , Neurons/physiology , Periaqueductal Gray/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Classical , Generalization, Psychological/physiology , Male , Mice, Inbred C57BL , Neural Pathways/physiology , Optogenetics
4.
Nature ; 535(7612): 420-4, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27409809

ABSTRACT

Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.


Subject(s)
Fear/physiology , Neural Pathways , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Animals , Conditioning, Classical , Freezing Reaction, Cataleptic , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Neurons/physiology , Optogenetics , Time Factors
5.
Nature ; 534(7606): 206-12, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279213

ABSTRACT

Survival in threatening situations depends on the selection and rapid execution of an appropriate active or passive defensive response, yet the underlying brain circuitry is not understood. Here we use circuit-based optogenetic, in vivo and in vitro electrophysiological, and neuroanatomical tracing methods to define midbrain periaqueductal grey circuits for specific defensive behaviours. We identify an inhibitory pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal grey that produces freezing by disinhibition of ventrolateral periaqueductal grey excitatory outputs to pre-motor targets in the magnocellular nucleus of the medulla. In addition, we provide evidence for anatomical and functional interaction of this freezing pathway with long-range and local circuits mediating flight. Our data define the neuronal circuitry underlying the execution of freezing, an evolutionarily conserved defensive behaviour, which is expressed by many species including fish, rodents and primates. In humans, dysregulation of this 'survival circuit' has been implicated in anxiety-related disorders.


Subject(s)
Escape Reaction/physiology , Freezing Reaction, Cataleptic/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Amygdala/cytology , Amygdala/physiology , Animals , GABAergic Neurons/physiology , Glutamic Acid/metabolism , Male , Medulla Oblongata/cytology , Medulla Oblongata/physiology , Mice , Mice, Inbred C57BL , Neural Inhibition/physiology , Neuroanatomical Tract-Tracing Techniques , Optogenetics
6.
Nat Neurosci ; 19(4): 605-12, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26878674

ABSTRACT

Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior.


Subject(s)
Amygdala/physiology , Biological Clocks/physiology , Fear/physiology , Fear/psychology , Optogenetics/methods , Prefrontal Cortex/physiology , Acoustic Stimulation/adverse effects , Animals , Conditioning, Psychological/physiology , Extinction, Psychological/physiology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Neural Pathways/physiology
7.
Nature ; 505(7481): 92-6, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24256726

ABSTRACT

Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.


Subject(s)
Fear/physiology , Interneurons/metabolism , Neural Inhibition/physiology , Parvalbumins/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Action Potentials , Amygdala/physiology , Animals , Conditioning, Psychological , Extinction, Psychological , Fear/psychology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Models, Neurological , Neural Pathways , Optogenetics , Theta Rhythm
SELECTION OF CITATIONS
SEARCH DETAIL
...