Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Ind Health ; 38(3): 139-150, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35230206

ABSTRACT

Blood lead level (BLL) is the primary biomarker for lead-exposure monitoring in occupationally exposed workers. We evaluated occupational lead-exposure (OE) impact on cardiopulmonary functions in lead-acid battery recycling unit workers. Seventy-six OE cases and 30 control subjects were enrolled for questionnaire-based socio-demographic, dietary, tobacco usage, and medical history data. Anthropometric measurements, systolic and diastolic blood pressure (SBP and DBP), and pulmonary function tests were performed. Venous blood was collected for BLL, hematological analysis, and biochemical analysis. OE caused a significant increase in BLL, SBP, DBP, and small airways obstruction in lung function tests. It also impaired platelet indices, affected renal and liver biochemical measurements, and promoted oxidative stress and DNA damage. Multilinear regression analysis suggested that BLL affected SBP (ß = 0.314, p = .034) and increased small airways obstruction (FEV1/FVC, ß = -0.37, p = .05; FEV25-75%, ß = -0.351, p = .016). Higher BLL appears to be an independent modulator of hypertension and poor pulmonary function upon occupational lead exposure in lead-acid battery recyclers.


Subject(s)
Hypertension , Occupational Exposure , Blood Pressure/physiology , Cross-Sectional Studies , Humans , Hypertension/etiology , Lead , Occupational Exposure/adverse effects , Occupational Exposure/analysis
2.
Cells ; 8(5)2019 04 26.
Article in English | MEDLINE | ID: mdl-31027377

ABSTRACT

Recent evidence supports the role of menthol, a TRPM8 agonist, in enhanced energy expenditure, thermogenesis and BAT-like activity in classical WAT depots in a TRPM8 dependent and independent manner. The present study was designed to analyse whether oral and topical administration of menthol is bioavailable at subcutaneous adipose tissue and is sufficient to directlyinduce desired energy expenditure effects. GC-FID was performed to study menthol bioavailability in serum and subcutaneous white adipose tissue following oral and topical administration. Further, 3T3L1 adipocytes were treated with bioavailable menthol doses and different parameters (lipid accumulation, "browning/brite" and energy expenditure gene expression, metal analysis, mitochondrial complex's gene expression) were studied. No difference was observed in serum levels but significant difference was seen in the menthol concentration on subcutaneous adipose tissues after oral and topical application. Menthol administration at bioavailable doses significantly increased "browning/brite" and energy expenditure phenotype, enhanced mitochondrial activity related gene expression, increased metal concentration during adipogenesis but did not alter the lipid accumulation as well as acute experiments were performed with lower dose of menthol on mature adipocytes In conclusion, the present study provides evidence that bioavailable menthol after single oral and topical administration is sufficient to induce "brite" phenotype in subcutaneous adipose tissue However, critical dose characterization for its clinical utility is required.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Energy Metabolism/drug effects , Menthol/pharmacology , Subcutaneous Fat/drug effects , TRPM Cation Channels/agonists , 3T3-L1 Cells , Adipogenesis/genetics , Administration, Oral , Administration, Topical , Animals , Biological Availability , Energy Metabolism/genetics , Gene Expression/drug effects , Male , Menthol/administration & dosage , Menthol/pharmacokinetics , Mice , Mitochondria/drug effects , Mitochondria/genetics , Thermogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...