Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 3352, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099640

ABSTRACT

Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.


Subject(s)
Blood Platelets/metabolism , Platelet Factor 4/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Angiogenesis Inducing Agents , Animals , Complement Activation , Complement C5a , Inflammation , Mice , Mice, Knockout , Receptor, Anaphylatoxin C5a/deficiency , Receptors, CXCR3/genetics , Signal Transduction
2.
Catheter Cardiovasc Interv ; 96(1): 179-186, 2020 07.
Article in English | MEDLINE | ID: mdl-31638343

ABSTRACT

OBJECTIVES: This observational study was designed to analyze the safety and feasibility of percutaneous skin closure using a purse-string suture (PSS) after MitraClip procedures. METHODS: Forty-one consecutive patients with severe mitral regurgitation who underwent MitraClip implantation from February 2018 to January 2019 at our institution received a PSS after percutaneous mitral valve repair before withdrawal of the 24-French (Fr) sheath. Protamine was not administered after venous closure at procedure end. No compression therapy (e.g., compression bandage or pneumatic compression device) was used. Patients were on bed rest for 6 hrs prior to suture removal, which was accomplished 18-24 hrs after MitraClip implantation. We analyzed the occurrence of any vascular or thromboembolic complications during the hospital stay and until the 3-month follow-up. RESULTS: The primary endpoint-any access-related major complication-did not occur in any patients. None of the patients revealed a pseudoaneurysm or an arteriovenous fistula, a thromboembolic complication, or local stenosis related to the PSS closure. The secondary endpoint- minor access-site vascular complications (hematoma)- was documented in six (14.6%) patients. CONCLUSIONS: Venous access-site closure with a PSS without the need for protamine administration or compression therapy appears to be safe and feasible in patients undergoing MitraClip implantation with access via a 24-Fr sheath.


Subject(s)
Cardiac Catheterization/instrumentation , Catheterization, Peripheral , Femoral Vein/surgery , Heart Valve Prosthesis Implantation/instrumentation , Hemorrhage/prevention & control , Hemostatic Techniques , Mitral Valve Insufficiency/surgery , Mitral Valve/surgery , Suture Techniques , Aged , Aged, 80 and over , Cardiac Catheterization/adverse effects , Catheterization, Peripheral/adverse effects , Female , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Hemorrhage/etiology , Hemostatic Techniques/adverse effects , Humans , Male , Mitral Valve/diagnostic imaging , Mitral Valve/physiopathology , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/physiopathology , Punctures , Severity of Illness Index , Suture Techniques/adverse effects , Treatment Outcome
4.
Arterioscler Thromb Vasc Biol ; 38(5): 1170-1177, 2018 05.
Article in English | MEDLINE | ID: mdl-29599141

ABSTRACT

OBJECTIVE: Endothelial cells play important roles in tissue homeostasis and vascularization, a function that is impaired by aging. Here, we aim to decipher the role of the microenvironment underlying the impairment of endothelial cell functions by aging. APPROACH AND RESULTS: RNA sequencing of isolated cardiac endothelial cells derived from young and 18-month-old mouse hearts revealed that aging affects the endothelial expression of genes encoding extracellular matrix proteins, specifically the laminin ß1 (Lamb1) and laminin ß2 (Lamb2) chains. Whereas Lamb1 was upregulated, Lamb2 was decreased in endothelial cells in old mice compared with young controls. A similar change in expression patterns was observed after induction of acute myocardial infarction. Mimicking aging and injury conditions by plating endothelial cells on laminin ß1-containing laminin 411 matrix impaired endothelial cell adhesion, migration, and tube formation and augmented endothelial-to-mesenchymal transition and endothelial detachment compared with laminin 421, which contains the laminin ß2 chain. Because laminins can signal via integrin receptors, we determined the activation of ITGB1 (integrin ß1). Laminin 421 coating induced a higher activation of ITGB1 compared with laminin 411. siRNA-mediated silencing of ITGB1 reduced laminin ß2-dependent adhesion, suggesting that laminin ß2 more efficiently activates ITGB1. CONCLUSIONS: Mimicking age-related modulation of laminin ß1 versus ß2 chain expression changes the functional properties and phenotype of endothelial cells. The dysregulation of the extracellular matrix during vascular aging may contribute to age-associated impairment of organ function and fibrosis.


Subject(s)
Aging/metabolism , Endothelial Cells/metabolism , Laminin/metabolism , Neovascularization, Physiologic , Age Factors , Aging/genetics , Animals , Cell Adhesion , Cell Movement , Cell Proliferation , Cell Separation/methods , Cells, Cultured , Cellular Microenvironment , Disease Models, Animal , Endothelial Cells/pathology , Extracellular Matrix/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Integrin beta1/metabolism , Laminin/genetics , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Phenotype , Signal Transduction
5.
Thromb Haemost ; 117(6): 1150-1163, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28447099

ABSTRACT

We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of ß2-integrin-dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischaemia-related angiogenesis. Intriguingly, Del-1-deficient mice displayed increased neovascularisation in two independent ischaemic models (retinopathy of prematurity and hind-limb ischaemia), as compared to Del-1-proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischaemic neovascularisation in Del-1-deficiency was linked to higher infiltration of the ischaemic tissue by CD45+ haematopoietic and immune cells. Moreover, Del-1-deficiency promoted ß2-integrin-dependent adhesion of haematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischaemic muscles in vivo. Consistently, the increased hind limb ischaemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the ß2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularisation in Del-1-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognised function of endogenous Del-1 as a local inhibitor of ischaemia-induced angiogenesis by restraining LFA-1-dependent homing of pro-angiogenic haematopoietic cells to ischaemic tissues. Our findings are relevant for the optimisation of therapeutic approaches in the context of ischaemic diseases.


Subject(s)
Carrier Proteins/metabolism , Endothelium, Vascular/physiology , Hematopoietic Stem Cells/physiology , Inflammation/metabolism , Ischemia/metabolism , Leukocytes/physiology , Retinopathy of Prematurity/metabolism , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Cell Adhesion , Cell Adhesion Molecules , Cell Movement , Disease Models, Animal , Extremities/pathology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/immunology , Intercellular Signaling Peptides and Proteins , Ischemia/immunology , Lymphocyte Function-Associated Antigen-1/genetics , Lymphocyte Function-Associated Antigen-1/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Mice, Knockout , Neovascularization, Physiologic , RNA, Small Interfering/genetics , Retinopathy of Prematurity/immunology
7.
J Mol Cell Cardiol ; 88: 111-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26456066

ABSTRACT

MicroRNAs are endogenously expressed small noncoding RNAs that regulate gene expression. Laminar blood flow induces atheroprotective gene expression in endothelial cells (ECs) in part by upregulating the transcription factor KLF2. Here, we identified KLF2- and flow-responsive miRs that affect gene expression in ECs. Bioinformatic assessment of mRNA expression patterns identified the miR-30-5p seed sequence to be highly enriched in mRNAs that are downregulated by KLF2. Indeed, KLF2 overexpression and shear stress stimulation in vitro and in vivo increased the expression of miR-30-5p family members. Furthermore, we identified angiopoietin 2 (Ang2) as a target of miR-30. MiR-30 overexpression reduces Ang2 levels, whereas miR-30 inhibition by LNA-antimiRs induces Ang2 expression. Consistently, miR-30 reduced basal and TNF-α-induced expression of the inflammatory cell­cell adhesion molecules E-selectin, ICAM1 and VCAM1, which was rescued by stimulation with exogenous Ang2. In summary, KLF2 and shear stress increase the expression of the miR-30-5p family which acts in an anti-inflammatory manner in ECs by impairing the expression of Ang2 and inflammatory cell­cell adhesion molecules. The upregulation of miR-30-5p family members may contribute to the atheroprotective effects of shear stress.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Kruppel-Like Transcription Factors/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Stress, Mechanical , Vesicular Transport Proteins/genetics , Adenoviridae/genetics , Base Sequence , Computational Biology , E-Selectin/genetics , E-Selectin/metabolism , Gene Expression Regulation , Hemorheology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Kruppel-Like Transcription Factors/metabolism , Lentivirus/genetics , MicroRNAs/metabolism , Molecular Sequence Data , RNA, Messenger/metabolism , Signal Transduction , Transduction, Genetic , Tumor Necrosis Factor-alpha/pharmacology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Vesicular Transport Proteins/metabolism
8.
Mol Psychiatry ; 20(7): 880-888, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25385367

ABSTRACT

Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1(-/-) mice displayed enhanced disruption of the blood-brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8(+) T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1(-/-) mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders.


Subject(s)
Axons/metabolism , Blood-Brain Barrier/metabolism , Carrier Proteins/metabolism , Myelin Sheath/metabolism , Neuroimmunomodulation/physiology , Spinal Cord/metabolism , Animals , Axons/drug effects , Axons/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Calcium-Binding Proteins , Capillary Permeability/drug effects , Capillary Permeability/physiology , Carrier Proteins/genetics , Cell Adhesion Molecules , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Granulocytes/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Homeostasis/drug effects , Homeostasis/physiology , Intercellular Signaling Peptides and Proteins , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath/drug effects , Myelin Sheath/pathology , Neuroimmunomodulation/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/pathology , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Severity of Illness Index , Spinal Cord/drug effects , Spinal Cord/pathology
9.
Basic Res Cardiol ; 109(2): 404, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24522833

ABSTRACT

ß1-Integrins are essential for angiogenesis. The mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. Brag2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of Brag2 in EC and angiogenesis and the underlying molecular mechanisms remain unclear. siRNA-mediated Brag2-silencing reduced EC angiogenic sprouting and migration. Brag2-siRNA transfection differentially affected α5ß1- and αVß3-integrin function: specifically, Brag2-silencing increased focal/fibrillar adhesions and adhesion on ß1-integrin ligands (fibronectin and collagen), while reducing the adhesion on the αVß3-integrin ligand, vitronectin. Consistent with these results, Brag2-silencing enhanced surface expression of α5ß1-integrin, while reducing surface expression of αVß3-integrin. Mechanistically, Brag2-mediated αVß3-integrin-recycling and ß1-integrin endocytosis and specifically of the active/matrix-bound α5ß1-integrin present in fibrillar/focal adhesions (FA), suggesting that Brag2 contributes to the disassembly of FA via ß1-integrin endocytosis. Arf5 and Arf6 are promoting downstream of Brag2 angiogenic sprouting, ß1-integrin endocytosis and the regulation of FA. In vivo silencing of the Brag2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitreal injection of plasmids containing Brag2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveal that Brag2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating ß1-integrin internalization and link for the first time the process of ß1-integrin endocytosis with angiogenesis.


Subject(s)
Cell Adhesion/physiology , Guanine Nucleotide Exchange Factors/genetics , Integrin beta1/metabolism , Integrin beta3/metabolism , Neovascularization, Pathologic/physiopathology , Retinopathy of Prematurity/physiopathology , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Animals , Animals, Genetically Modified , COS Cells , Cell Movement/physiology , Chlorocebus aethiops , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/physiopathology , Disease Models, Animal , Guanine Nucleotide Exchange Factors/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Integrin alphaVbeta3/genetics , Integrin alphaVbeta3/metabolism , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , RNA, Small Interfering/genetics , Receptors, Vitronectin/genetics , Receptors, Vitronectin/metabolism , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish
10.
Blood ; 121(15): 3041-50, 2013 04 11.
Article in English | MEDLINE | ID: mdl-23386126

ABSTRACT

Angiogenesis, defined as blood vessel formation from a preexisting vasculature, is governed by multiple signal cascades including integrin receptors, in particular integrin αVß3. Here we identify the endothelial cell (EC)-secreted factor epidermal growth factor-like protein 7 (EGFL7) as a novel specific ligand of integrin αVß3, thus providing mechanistic insight into its proangiogenic actions in vitro and in vivo. Specifically, EGFL7 attaches to the extracellular matrix and by its interaction with integrin αVß3 increases the motility of EC, which allows EC to move on a sticky underground during vessel remodeling. We provide evidence that the deregulation of EGFL7 in zebrafish embryos leads to a severe integrin-dependent malformation of the caudal venous plexus, pointing toward the significance of EGFL7 in vessel development. In biopsy specimens of patients with neurologic diseases, vascular EGFL7 expression rose with increasing EC proliferation. Further, EGFL7 became upregulated in vessels of the stroke penumbra using a mouse model of reversible middle cerebral artery occlusion. Our data suggest that EGFL7 expression depends on the remodeling state of the existing vasculature rather than on the phenotype of neurologic disease analyzed. In sum, our work sheds a novel light on the molecular mechanism EGFL7 engages to govern physiological and pathological angiogenesis.


Subject(s)
Blood Vessels/metabolism , Endothelial Growth Factors/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Integrin alphaVbeta3/metabolism , Amino Acid Motifs/genetics , Animals , Calcium-Binding Proteins , Cell Adhesion/genetics , Cell Movement/genetics , EGF Family of Proteins , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/metabolism , Endothelial Growth Factors/genetics , Endothelial Growth Factors/pharmacology , Extracellular Matrix/metabolism , Gene Expression , HEK293 Cells , Humans , Immunohistochemistry , Immunoprecipitation , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Integrin alphaVbeta3/genetics , Mice , Mice, Nude , Phosphorylation/drug effects , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish
11.
Circ Res ; 112(6): 924-34, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23362312

ABSTRACT

RATIONALE: Polarity proteins are involved in the apico-basal orientation of epithelial cells, but relatively little is known regarding their function in mesenchymal cells. OBJECTIVE: We hypothesized that polarity proteins also contribute to endothelial processes like angiogenesis. METHODS AND RESULTS: Screening of endothelial cells revealed high expression of the polarity protein Scribble (Scrib). On fibronectin-coated carriers Scrib siRNA (siScrib) blocked directed but not random migration of human umbilical vein endothelial cells and led to an increased number and disturbed orientation of cellular lamellipodia. Coimmunoprecipitation/mass spectrometry and glutathione S-transferase (GST) pulldown assays identified integrin α5 as a novel Scrib interacting protein. By total internal reflection fluorescence (TIRF) microscopy, Scrib and integrin α5 colocalize at the basal plasma membrane of endothelial cells. Western blot and fluorescence activated cell sorting (FACS) analysis revealed that silencing of Scrib reduced the protein amount and surface expression of integrin α5 whereas surface expression of integrin αV was unaffected. Moreover, in contrast to fibronectin, the ligand of integrin α5, directional migration on collagen mediated by collagen-binding integrins was unaffected by siScrib. Mechanistically, Scrib supported integrin α5 recycling and protein stability by blocking its interaction with Rab7a, its translocation into lysosomes, and its subsequent degradation by pepstatin-sensitive proteases. In siScrib-treated cells, reinduction of the wild-type protein but not of PSD95, Dlg, ZO-1 (PDZ), or leucine rich repeat domain mutants restored integrin α5 abundance and directional cell migration. The downregulation of Scrib function in Tg(kdrl:EGFP)(s843) transgenic zebrafish embryos delayed the angiogenesis of intersegmental vessels. CONCLUSIONS: Scrib is a novel regulator of integrin α5 turnover and sorting, which is required for oriented cell migration and sprouting angiogenesis.


Subject(s)
Cell Movement/physiology , Cell Polarity/physiology , Human Umbilical Vein Endothelial Cells/physiology , Integrin alpha5/metabolism , Membrane Proteins/physiology , Neovascularization, Physiologic/physiology , Tumor Suppressor Proteins/physiology , Animals , Cell Migration Assays , Cell Movement/drug effects , Endothelial Cells/physiology , Humans , Integrin alphaV/metabolism , Membrane Proteins/antagonists & inhibitors , Mice , RNA, Small Interfering/pharmacology , Tumor Suppressor Proteins/antagonists & inhibitors
12.
Circ Res ; 111(7): 854-62, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22821930

ABSTRACT

RATIONALE: Cell therapy is a promising option for the treatment of acute or chronic myocardial ischemia. The intracoronary infusion of cells imposes the potential risk of cell clotting, which may be prevented by the addition of anticoagulants. However, a comprehensive analysis of the effects of anticoagulants on the function of the cells is missing. OBJECTIVE: Here, we investigated the effects of heparin and the thrombin inhibitor bivalirudin on bone marrow-derived mononuclear cell (BMC) functional activity and homing capacity. METHODS AND RESULTS: Heparin, but not bivalirudin profoundly and dose-dependently inhibited basal and stromal cell-derived factor 1 (SDF-1)-induced BMC migration. Incubation of BMCs with 20 U/mL heparin for 30 minutes abrogated SDF-1-induced BMC invasion (16±8% of control; P<0.01), whereas no effects on apoptosis or colony formation were observed (80±33% and 100±44% of control, respectively). Pretreatment of BMCs with heparin significantly reduced the homing of the injected cells in a mouse ear-wound model (69±10% of control; P<0.05). In contrast, bivalirudin did not inhibit in vivo homing of BMCs. Mechanistically, heparin binds to both, the chemoattractant SDF-1 and its receptor, chemokine receptor 4 (CXCR4), blocking CXCR4 internalization as well as SDF-1/CXCR4 signaling after SDF-1 stimulation. CONCLUSIONS: Heparin blocks SDF-1/CXCR4 signaling by binding to the ligand as well as the receptor, thereby interfering with migration and homing of BMCs. In contrast, the thrombin inhibitor bivalirudin did not interfere with BMC homing or SDF-1/CXCR4 signaling. These findings suggest that bivalirudin but not heparin might be recommended as an anticoagulant for intracoronary infusion of BMCs for cell therapy after cardiac ischemia.


Subject(s)
Bone Marrow Cells/cytology , Cell- and Tissue-Based Therapy , Chemokine CXCL12/drug effects , Heparin/pharmacology , Leukocytes, Mononuclear/drug effects , Myocardial Infarction/therapy , Receptors, CXCR4/drug effects , Signal Transduction/drug effects , Animals , Anticoagulants/pharmacology , Antithrombins/pharmacology , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Chemokine CXCL12/physiology , Disease Models, Animal , Female , Hirudins/pharmacology , Humans , In Vitro Techniques , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/physiology , Mice , Mice, Inbred Strains , Peptide Fragments/pharmacology , Receptors, CXCR4/physiology , Recombinant Proteins/pharmacology , Signal Transduction/physiology
13.
J Clin Invest ; 122(6): 1991-2005, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22585576

ABSTRACT

Angiopoietin-2 (ANG-2) is a key regulator of angiogenesis that exerts context-dependent effects on ECs. ANG-2 binds the endothelial-specific receptor tyrosine kinase 2 (TIE2) and acts as a negative regulator of ANG-1/TIE2 signaling during angiogenesis, thereby controlling the responsiveness of ECs to exogenous cytokines. Recent data from tumors indicate that under certain conditions ANG-2 can also promote angiogenesis. However, the molecular mechanisms of dual ANG-2 functions are poorly understood. Here, we identify a model for the opposing roles of ANG-2 in angiogenesis. We found that angiogenesis-activated endothelium harbored a subpopulation of TIE2-negative ECs (TIE2lo). TIE2 expression was downregulated in angiogenic ECs, which abundantly expressed several integrins. ANG-2 bound to these integrins in TIE2lo ECs, subsequently inducing, in a TIE2-independent manner, phosphorylation of the integrin adaptor protein FAK, resulting in RAC1 activation, migration, and sprouting angiogenesis. Correspondingly, in vivo ANG-2 blockade interfered with integrin signaling and inhibited FAK phosphorylation and sprouting angiogenesis of TIE2lo ECs. These data establish a contextual model whereby differential TIE2 and integrin expression, binding, and activation control the role of ANG-2 in angiogenesis. The results of this study have immediate translational implications for the therapeutic exploitation of angiopoietin signaling.


Subject(s)
Angiopoietin-2/metabolism , Down-Regulation , Integrins/metabolism , Melanoma/metabolism , Neoplasm Proteins/metabolism , Neovascularization, Pathologic/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Angiopoietin-2/genetics , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Humans , Integrins/genetics , Male , Melanoma/genetics , Melanoma/pathology , Mice , Neoplasm Proteins/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neuropeptides/genetics , Neuropeptides/metabolism , Phosphorylation/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor, TIE-2 , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
14.
Biomaterials ; 33(19): 4792-800, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22483246

ABSTRACT

Enrichment of progenitor cells in ischemic tissue has become a promising therapeutic strategy in the treatment of myocardial infarction. Towards this aim, we report a biology-inspired concept using sulfated glycosaminoglycans to sustainably generate chemokine gradients for the localized accumulation of early endothelial progenitor cells (eEPCs). StarPEG-heparin hydrogels, which have been previously demonstrated to support angiogenesis, were functionalized with SDF-1α, a potent chemoattractant known to act on EPCs. The gels were quantitatively shown to release the chemokine in amounts that are adjustable by the choice of loading concentrations and by matrix metalloprotease (MMP) mediated hydrogel cleavage. Transwell assays confirmed significantly enhanced migration of early EPCs towards concentration gradients of hydrogel-delivered SDF-1α in vitro. Subcutaneous implantation of SDF-1α-releasing gels in mice resulted in massive infiltration of early EPCs and subsequently improved vascularization. In conclusion, sustained delivery of SDF-1α from pro-angiogenic starPEG-heparin hydrogels can effectively attract early EPCs, offering a powerful means to trigger endogenous mechanisms of cardiac regeneration.


Subject(s)
Chemokine CXCL12/administration & dosage , Chemokine CXCL12/pharmacology , Heparin/chemistry , Hydrogels/chemistry , Animals , Cell Movement/drug effects , Cells, Cultured , Chemokine CXCL12/chemistry , Chemotaxis/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Hydrogels/pharmacology , Mice , Mice, Nude , Stem Cells/cytology , Stem Cells/drug effects
15.
J Cell Mol Med ; 16(10): 2387-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22353471

ABSTRACT

Homing of endothelial progenitor cells (EPCs) is crucial for neoangiogenesis, which might be negatively affected by hypoxia. We investigated the influence of hypoxia on fibronectin binding integrins for migration and cell-matrix-adhesion. AMP-activated kinase (AMPK) and integrin-linked kinase (ILK) were examined as possible effectors of hypoxia. Human EPCs were expanded on fibronectin (FN) and integrin expression was profiled by flow cytometry. Cell-matrix-adhesion- and migration-assays on FN were performed to examine the influence of hypoxia and AMPK-activation. Regulation of AMPK and ILK was shown by Western blot analysis. We demonstrate the presence of integrin ß(1), ß(2) and α(5) on EPCs. Adhesion to FN is reduced by blocking ß(1) and α(5) (49% and 2% of control, P < 0.05) whereas α(4)-blockade has no effect. Corresponding effects were shown for migration. Hypoxia and AMPK-activation decrease adhesion on FN. Although total AMPK-expression remains unchanged, phospho-AMPK increases eightfold. The EPCs require α(5) for adhesion on FN. Hypoxia and AMPK-activation decrease adhesion. As α(5) is the major adhesive factor for EPCs on FN, this suggests a link between AMPK and α(5)-integrins. We found novel evidence for a connection between hypoxia, AMPK-activity and integrin activity. This might affect the fate of EPCs in ischaemic tissue.


Subject(s)
Cell Adhesion , Endothelial Cells/cytology , Integrins/metabolism , Stem Cells/cytology , AMP-Activated Protein Kinases/metabolism , Cell Hypoxia , Cell Line , Cell Movement/physiology , Fibronectins/metabolism , Gene Expression Regulation , Humans , Peripheral Blood Stem Cell Transplantation , Phosphorylation
16.
Blood ; 118(18): 5050-9, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21868579

ABSTRACT

In human inflammatory diseases, we identified endothelial angiopoietin-2 (Ang-2) expression to be strongly associated with inflammations mediated by myeloid cells but not lymphocytes. To identify the underlying mechanism, we made use of a transgenic mouse model with inducible endothelial cell-specific expression of Ang-2. In this model, in the absence of inflammatory stimuli, long-term expression of Ang-2 led to a time-dependent accumulation of myeloid cells in numerous organs, suggesting that Ang-2 is sufficient to recruit myeloid cells. In models of acute inflammation, such as delayed-type hypersensitivity and peritonitis, Ang-2 transgenic animals showed an increased responsiveness. Intravital fluorescence video microscopy revealed augmented cell adhesion as an underlying event. Consequently, we demonstrated that Ang-2 is able to induce strong monocyte adhesion under shear in vitro, which could be blocked by antibodies to ß2-integrin. Taken together, our results describe Ang-2 as a novel, endothelial-derived regulator of myeloid cell infiltration that modulates ß2-integrin-mediated adhesion in a paracrine manner.


Subject(s)
Angiopoietin-2/physiology , CD18 Antigens/physiology , Cell Movement/genetics , Myeloid Cells/physiology , Adult , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Animals , CD18 Antigens/genetics , CD18 Antigens/metabolism , Cell Adhesion/genetics , Cells, Cultured , Genetic Predisposition to Disease , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Transgenic , Monocytes/metabolism , Monocytes/physiology , Myeloid Cells/metabolism , Myeloid Progenitor Cells/metabolism , Myeloid Progenitor Cells/physiology , Signal Transduction/genetics , Signal Transduction/physiology
17.
J Biol Chem ; 286(39): 34335-45, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21795701

ABSTRACT

The semaphorins are a family of secreted or membrane-bound proteins that are known to guide axons in the developing nervous system. Genetic evidence revealed that a class III semaphorin, semaphorin 3E (Sema3E), and its receptor Plexin-D1 also control the vascular patterning during development. At the molecular level, we have recently shown that Sema3E acts on Plexin-D1 expressed in endothelial cells, thus initiating a novel antiangiogenic signaling pathway that results in the retraction of filopodia in endothelial tip cells. Sema3E induces the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix. This process requires the activation of small GTPase Arf6 (ADP-ribosylation factor 6), which regulates intracellular trafficking of ß1 integrin. However, the molecular mechanisms by which Sema3E-Plexin-D1 activates Arf6 remained to be identified. Here we show that GEP100 (guanine nucleotide exchange protein 100)/Brag2, a guanine nucleotide exchange factor for Arf6, mediates Sema3E-induced Arf6 activation in endothelial cells. We provide evidence that upon activation by Sema3E, Plexin-D1 recruits phosphatidylinositol-4-phosphate 5-kinase, and its enzymatic lipid product, phosphatidylinositol 4,5-bisphosphate, binds to the pleckstrin homology domain of GEP100. Phosphatidylinositol 4,5-bisphosphate binding to GEP100 enhances its guanine nucleotide exchange factor activity toward Arf6, thus resulting in the disassembly of integrin-mediated focal adhesions and endothelial cell collapse. Our present study reveals a novel phospholipid-regulated antiangiogenic signaling pathway whereby Sema3E activates Arf6 through Plexin-D1 and consequently controls integrin-mediated endothelial cell attachment to the extracellular matrix and migration.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Semaphorins/metabolism , Signal Transduction/physiology , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Animals , COS Cells , Cell Adhesion/physiology , Cell Adhesion Molecules, Neuronal/genetics , Cell Movement/physiology , Chlorocebus aethiops , Endothelial Cells/cytology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Integrins/genetics , Integrins/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins , Phosphotransferases (Alcohol Group Acceptor)/genetics , Semaphorins/genetics
18.
Antioxid Redox Signal ; 15(4): 967-80, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-20812875

ABSTRACT

Progenitor cells mobilized from the bone marrow are recruited to ischemic tissues and increase neovascularization. Cell therapy is a promising new therapeutic option for treating patients with ischemic disorders. The efficiency of cell therapy to augment recovery after ischemia depends on the sufficient recruitment and engraftment of the cells to the target tissue. Homing to sites of active neovascularization is a complex process depending on a timely and spatially orchestrated interplay between chemokines, chemokine receptors, adhesion molecules (selectins and integrins), and intracellular signaling cascades, including also oxidative signaling. This review will focus on the homing mechanisms of progenitor and stem cells to ischemic tissues. Specifically, we discuss the role of chemokines and adhesion molecules such as selectins and integrins and the crosstalk between chemokines and integrins in progenitor cell homing.


Subject(s)
Cell Adhesion Molecules/physiology , Cell Movement , Ischemia/therapy , Leukocytes/metabolism , Myocardial Ischemia/therapy , Stem Cells/physiology , Chemokines/metabolism , Hematopoietic Stem Cells/physiology , Humans , Integrins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Stem Cell Transplantation , Transendothelial and Transepithelial Migration/physiology
19.
Basic Res Cardiol ; 105(6): 703-12, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20652278

ABSTRACT

Diabetes is characterized by a chronic stage of hyperglycemia associated with endothelial progenitor cell dysfunction and reduced neovascularization in response to tissue ischemia. The underlying mechanisms are not entirely clear. The bone marrow niches provide the essential microenvironment for maintenance of stem cell function in the bone marrow. A disturbed stem cell niche might lead to stem cell dysfunction, thereby, impairing progenitor cell-dependent vascular repair. Therefore, we investigated the effects of streptozotocin-induced diabetes on the bone marrow stem cell niches and stem cell function in mice. Here, we show that long-term diabetes induced a reduction in Lin⁻Sca-1(+)c-kit(+) hematopoietic progenitor cells and reduced the repopulation capacity in a competitive engraftment experiment. Consistently, the expression of Bmi1, which prevents hematopoietic progenitor cell senescence, was significantly reduced in diabetic bone marrow cells. To address the mechanism underlying the progenitor cell dysfunction, we analyzed the composition of the stem cell niche and the cytokine environment. Although the morphology of the vascular and endosteal niche was not affected by diabetes, diabetic mice showed a significant deterioration of cytokine expression patterns in the bone marrow. In summary, these data indicate that diabetes imposes a long-term effect on the stem cell niche and affects important hematopoietic progenitor cell functions in mice.


Subject(s)
Bone Marrow Cells/pathology , Cell Proliferation , Cytokines/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/pathology , Hematopoietic Stem Cells/pathology , Stem Cell Niche , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/immunology , Bone Marrow Transplantation , Cell Differentiation , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/physiopathology , Endothelial Cells/immunology , Endothelial Cells/pathology , Gene Expression Regulation , Hematopoietic Stem Cells/immunology , Hindlimb , Ischemia/immunology , Ischemia/pathology , Ischemia/physiopathology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Nuclear Proteins/metabolism , Osteoblasts/immunology , Osteoblasts/pathology , Osteoclasts/immunology , Osteoclasts/pathology , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Repressor Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...