Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Annu Rev Cell Dev Biol ; 39: 67-89, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37607470

ABSTRACT

Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.


Subject(s)
Biology , Animals
2.
Med ; 2(5): 591-610.e10, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33969332

ABSTRACT

BACKGROUND: Pregnant women are at increased risk for severe outcomes from coronavirus disease 2019 (COVID-19), but the pathophysiology underlying this increased morbidity and its potential effect on the developing fetus is not well understood. METHODS: We assessed placental histology, ACE2 expression, and viral and immune dynamics at the term placenta in pregnant women with and without respiratory severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FINDINGS: The majority (13 of 15) of placentas analyzed had no detectable viral RNA. ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term, suggesting that low ACE2 expression may protect the term placenta from viral infection. Using immortalized cell lines and primary isolated placental cells, we found that cytotrophoblasts, the trophoblast stem cells and precursors to syncytiotrophoblasts, rather than syncytiotrophoblasts or Hofbauer cells, are most vulnerable to SARS-CoV-2 infection in vitro. To better understand potential immune mechanisms shielding placental cells from infection in vivo, we performed bulk and single-cell transcriptomics analyses and found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited robust immune responses, including increased activation of natural killer (NK) and T cells, increased expression of interferon-related genes, as well as markers associated with pregnancy complications such as preeclampsia. CONCLUSIONS: SARS-CoV-2 infection in late pregnancy is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion. FUNDING: NIH (T32GM007205, F30HD093350, K23MH118999, R01AI157488, U01DA040588) and Fast Grant funding support from Emergent Ventures at the Mercatus Center.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Angiotensin-Converting Enzyme 2/genetics , Female , Humans , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/metabolism , SARS-CoV-2
3.
medRxiv ; 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33532791

ABSTRACT

Pregnant women appear to be at increased risk for severe outcomes associated with COVID-19, but the pathophysiology underlying this increased morbidity and its potential impact on the developing fetus is not well understood. In this study of pregnant women with and without COVID-19, we assessed viral and immune dynamics at the placenta during maternal SARS-CoV-2 infection. Amongst uninfected women, ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term. Term placentas from women infected with SARS-CoV-2, however, displayed a significant increase in ACE2 levels. Using immortalized cell lines and primary isolated placental cells, we determined the vulnerability of various placental cell types to direct infection by SARS-CoV-2 in vitro. Yet, despite the susceptibility of placental cells to SARS-CoV-2 infection, viral RNA was detected in the placentas of only a subset (~13%) of women in this cohort. Through single cell transcriptomic analyses, we found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited markers associated with pregnancy complications, such as preeclampsia, and robust immune responses, including increased activation of placental NK and T cells and increased expression of interferon-related genes. Overall, this study suggests that SARS-CoV-2 is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion. While this likely represents a protective mechanism shielding the placenta from infection, inflammatory changes in the placenta may also contribute to poor pregnancy outcomes and thus warrant further investigation.

4.
Mol Biol Evol ; 38(3): 1060-1074, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33185661

ABSTRACT

Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.


Subject(s)
Biological Evolution , Embryo Implantation , Eutheria/genetics , Interleukin-17/metabolism , Opossums/metabolism , Uterus/metabolism , Animals , Decidua/cytology , Eutheria/embryology , Female , Gene Expression , Models, Biological , Neutrophil Infiltration , Rabbits , Stromal Cells
5.
Proc Biol Sci ; 286(1905): 20190691, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31213185

ABSTRACT

In human pregnancy, recognition of an embryo within the uterus is essential to support the fetus through gestation. In most marsupials, such as the opossums, pregnancy is shorter than the oestrous cycle and the steroid hormone profile during pregnancy and oestrous cycle are indistinguishable. For these reasons, it was assumed that recognition of pregnancy, as a trait, evolved in the eutherian (placental) stem lineage and independently in wallabies and kangaroos. To investigate whether uterine recognition of pregnancy occurs in species with pregnancy shorter than the oestrous cycle, we examined reproduction in the short-tailed opossum ( Monodelphis domestica), a marsupial with a plesiomorphic mode of pregnancy. We examined the morphological and gene expression changes in the uterus of females in the non-pregnant oestrous cycle and compared these to pregnancy. We found that the presence of an embryo did not alter some aspects of uterine development but increased glandular activity. Transcriptionally, we saw big differences between the uterus of pregnant and cycling animals. These differences included an upregulation of genes involved in transport, inflammation and metabolic-activity in response to the presence of a fetus. Furthermore, transcriptional differences reflected protein level differences in transporter abundance. Our results suggest that while the uterus exhibits programmed changes after ovulation, its transcriptional landscape during pregnancy responds to the presence of a fetus and upregulates genes that may be essential for fetal support. These results are consistent with endometrial recognition of pregnancy occurring in the opossum. While the effects on maternal physiology appear to differ, recognition of pregnancy has now been observed in eutherian mammals, as well as, Australian and American marsupials.


Subject(s)
Monodelphis/physiology , Pregnancy , Animals , Estrous Cycle , Female , Marsupialia
6.
PLoS Biol ; 16(8): e2005594, 2018 08.
Article in English | MEDLINE | ID: mdl-30142145

ABSTRACT

Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.


Subject(s)
Decidua/physiology , Stress, Physiological/physiology , Animals , Biological Evolution , Endometrium/physiology , Evolution, Molecular , Female , Fibroblasts , Mammals , Monodelphis/physiology , Stress, Physiological/genetics , Stromal Cells/metabolism , Stromal Cells/physiology , Transcription Factors/metabolism
8.
N Engl J Med ; 377(12): 1156-1167, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28877031

ABSTRACT

BACKGROUND: Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS: We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10-8) or an association with suggestive significance (P<1.0×10-6) in the discovery set. RESULTS: In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS: In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Gestational Age , Peptide Elongation Factors/genetics , Premature Birth/genetics , Receptor, Angiotensin, Type 2/genetics , Trans-Activators/genetics , Adenylyl Cyclases/genetics , Datasets as Topic , Female , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Pregnancy , Regression Analysis , Wnt4 Protein/genetics , ras Proteins/genetics
9.
Curr Opin Genet Dev ; 47: 24-32, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28850905

ABSTRACT

A widely discussed physiological puzzle of mammalian pregnancy is the immunological paradox, which asks: why is the semi-allogenic fetus not attacked by the mother's adaptive immune system? Here, we argue that an additional, and perhaps more fundamental paradox is the question: why is embryo implantation so similar to inflammation while inflammation is also the greatest threat to the continuation of pregnancy? Equally puzzling is the question of how this arose during evolution. We call this the inflammation paradox. We argue that acute endometrial inflammation was ancestrally a natural maternal reaction to the attaching blastocyst, a situation still observed in the opossum. Eutherian implantation arose through a transformation of the acute inflammation into a process essential for implantation by causing vascular permeability and matrix reorganization as well as by suppressing the effects deleterious to the fetus. We propose that this model allows us to understand the differences between 'good inflammation' and 'bad inflammation'. Further, it allows us to understand the influence of inflammation on the outcome of pregnancy and maternal health.


Subject(s)
Biological Evolution , Embryo Implantation/immunology , Inflammation/immunology , Maternal-Fetal Relations/physiology , Animals , Blastocyst/immunology , Female , Humans , Immune System , Mammals , Pregnancy/immunology
10.
Proc Natl Acad Sci U S A ; 114(32): E6566-E6575, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28747528

ABSTRACT

The molecular changes that support implantation in eutherian mammals are necessary to establish pregnancy. In marsupials, pregnancy is relatively short, and although a placenta does form, it is present for only a few days before parturition. However, morphological changes in the uterus of marsupials at term mimic those that occur during implantation in humans and mice. We investigated the molecular similarity between term pregnancy in the marsupials and implantation in eutherian mammals using the gray short-tailed opossum (Monodelphis domestica) as a model. Transcriptomic analysis shows that term pregnancy in the opossum is characterized by an inflammatory response consistent with implantation in humans and mice. This immune response is temporally correlated with the loss of the eggshell, and we used immunohistochemistry to report that this reaction occurs at the materno-fetal interface. We demonstrate that key markers of implantation, including Heparin binding EGF-like growth factor and Mucin 1, exhibit expression and localization profiles consistent with the pattern observed during implantation in eutherian mammals. Finally, we show that there are transcriptome-wide similarities between the opossum attachment reaction and implantation in rabbits and humans. Our data suggest that the implantation reaction that occurs in eutherians is derived from an attachment reaction in the ancestral therian mammal which, in the opossum, leads directly to parturition. Finally, we argue that the ability to shift from an inflammatory attachment reaction to a noninflammatory period of pregnancy was a key innovation in eutherian mammals that allowed an extended period of intimate placentation.


Subject(s)
Biological Evolution , Embryo Implantation/physiology , Embryo, Mammalian/embryology , Monodelphis/embryology , Pregnancy/physiology , Animals , Female , Gene Expression Regulation, Developmental/physiology , Heparin-binding EGF-like Growth Factor/biosynthesis , Humans , Mice , Mucin-1/biosynthesis
11.
Sci Rep ; 7(1): 4439, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667298

ABSTRACT

The uterine cervix is the boundary structure between the uterus and the vagina and is key for the maintenance of pregnancy and timing of parturition. Here we report on a comparative transcriptomic study of the cervix of four placental mammals, mouse, guinea pig, rabbit and armadillo, and one marsupial, opossum. Our aim is to investigate the evolution of cervical gene expression as related to putative mechanisms for functional progesterone withdrawal. Our findings are: 1) The patterns of gene expression in eutherian (placental) mammals are consistent with the notion that an increase in the E/P4 signaling ratio is critical for cervical ripening. How the increased E/P4 ratio is achieved, however, is variable between species. 2) None of the genes related to steroid signaling, that are modulated in eutherian species, change expression during opossum gestation. 3) A tendency for decreased expression of progesterone receptor co-activators (NCOA1, -2 and -3, and CREBBP) towards term is a shared derived feature of eutherians. This suggests that parturition is associated with broad scale histone de-acetylation. Western-blotting on mouse cervix confirmed large scale histone de-acetylation in labor. This finding may have important implications for the control of premature cervical ripening and prevention of preterm birth in humans.


Subject(s)
Cervix Uteri/metabolism , Gene Expression Regulation , Signal Transduction , Steroids/metabolism , Acetylation , Animals , Cervical Ripening , Estrogens/metabolism , Female , Gene Expression Profiling , Guinea Pigs , Histones/metabolism , Mice , Pregnancy , Pregnancy, Animal , Progesterone/metabolism , Prostaglandins/metabolism , Rabbits , Relaxin/metabolism
12.
Genome Res ; 27(3): 349-361, 2017 03.
Article in English | MEDLINE | ID: mdl-28174237

ABSTRACT

Organismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome by assessing the gene expression of receptor-ligand pairs across cell types. We find a highly cell-type-specific expression of G-protein-coupled receptors, implying that ligand-receptor profiles could be a reliable tool for cell type identification. Furthermore, we find that uterine decidual cells represent a cell-cell interaction hub with a large number of potential incoming and outgoing signals. Decidual cells differentiate from their precursors, the endometrial stromal fibroblasts, during uterine preparation for pregnancy. We show that decidualization (even in vitro) enhances the ability to communicate with the fetus, as most of the receptors and ligands up-regulated during decidualization have their counterpart expressed in trophoblast cells. Among the signals transmitted, growth factors and immune signals dominate, and suggest a delicate balance of enhancing and suppressive signals. Finally, this study provides a rich resource of gene expression profiles of term intravillous and extravillous trophoblasts, including the transcriptome of the multinucleated syncytiotrophoblast.


Subject(s)
Cell Communication , Decidua/metabolism , Maternal-Fetal Exchange , Transcriptome , Cell Line , Cells, Cultured , Decidua/cytology , Female , Humans , Pregnancy , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Single-Cell Analysis , Up-Regulation
13.
Genome Biol Evol ; 8(8): 2459-73, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27401177

ABSTRACT

The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type "neo-ESF" in contrast to "paleo-ESF" which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation.


Subject(s)
Endometrium/metabolism , Evolution, Molecular , Stromal Cells/metabolism , Transcriptome/genetics , Animals , Cattle , Endometrium/growth & development , Epithelial Cells , Female , Fibroblasts/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Mink/genetics , Pregnancy , Rabbits , Rats , Signal Transduction/genetics
14.
Zoological Lett ; 2: 11, 2016.
Article in English | MEDLINE | ID: mdl-27284459

ABSTRACT

BACKGROUND: The evolution of invasive placentation in the stem lineage of eutherian mammals entailed resolution of the incompatibility between a semi-allogenic fetus and the maternal immune system. The haemochorial placenta of nine-banded armadillo (Dasypus novemcinctus) is thought to conceal itself from the maternal immune system to some degree by developing inside a preformed blood sinus, with minimal contact with the uterine connective tissue. In the present study, we elucidate the micro-anatomical relationship between fetal and maternal tissue of the nine-banded armadillo using histochemical and immunohistochemical tools. RESULTS: We conclude that the chorio-allantoic villi are separated from the myometrium by a vascular endothelial layer, as previously proposed. However, we also observe that the trophoblast cells establish direct contact with the endometrial stroma on the luminal side of the endometrium by partially replacing the endothelial lining of the sinus. Further, we demonstrate the presence of leukocytes, perhaps entrapped, in the placental fibrinoids at the interface between the intervillous space and the endometrial arcade. CONCLUSIONS: The trophoblast of the armadillo invades the uterine tissue to a greater extent than was previously believed. We discuss the implications of this finding for the fetal-maternal immune tolerance.

15.
Placenta ; 40: 40-51, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27016782

ABSTRACT

In human and mouse, decidual stromal cells (DSC) are necessary for the establishment (implantation) and the maintenance of pregnancy by preventing inflammation and the immune rejection of the semi-allograft conceptus. DSC originated along the stem lineage of eutherian mammals, coincidental with the origin of invasive placentation. Surprisingly, in many eutherian lineages decidual cells are lost after the implantation phase of pregnancy, making it unlikely that DSC are necessary for the maintenance of pregnancy in these animals. In order to understand this variation, we review the literature on the fetal-maternal interface in all major eutherian clades Euarchontoglires, Laurasiatheria, Xenarthra and Afrotheria, as well as the literature about the ancestral eutherian species. We conclude that maintaining pregnancy may not be a shared derived function of DSC among all eutherian mammals. Rather, we propose that DSC originated to manage the inflammatory reaction associated with invasive implantation. We envision that this happened in a stem eutherian that had invasive placenta but still a short gestation. We further propose that extended gestation evolved independently in the major eutherian clades explaining why the major lineages of eutherian mammals differ with respect to the mechanisms maintaining pregnancy.


Subject(s)
Biological Evolution , Decidua/physiology , Embryo Implantation , Mammals , Pregnancy , Animals , Female , Humans
16.
Genome Res ; 22(10): 1930-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22645260

ABSTRACT

The acquisition of new genes, via horizontal transfer or gene duplication/diversification, has been the dominant mechanism thus far implicated in the evolution of microbial pathogenicity. In contrast, the role of many other modes of evolution--such as changes in gene expression regulation-remains unknown. A transition to a pathogenic lifestyle has recently taken place in some lineages of the budding yeast Saccharomyces cerevisiae. Here we identify a module of physically interacting proteins involved in endocytosis that has experienced selective sweeps for multiple cis-regulatory mutations that down-regulate gene expression levels in a pathogenic yeast. To test if these adaptations affect virulence, we created a panel of single-allele knockout strains whose hemizygous state mimics the genes' adaptive down-regulations, and measured their virulence in a mammalian host. Despite having no growth advantage in standard laboratory conditions, nearly all of the strains were more virulent than their wild-type progenitor, suggesting that these adaptations likely played a role in the evolution of pathogenicity. Furthermore, genetic variants at these loci were associated with clinical origin across 88 diverse yeast strains, suggesting the adaptations may have contributed to the virulence of a wide range of clinical isolates. We also detected pleiotropic effects of these adaptations on a wide range of morphological traits, which appear to have been mitigated by compensatory mutations at other loci. These results suggest that cis-regulatory adaptation can occur at the level of physically interacting modules and that one such polygenic adaptation led to increased virulence during the evolution of a pathogenic yeast.


Subject(s)
Adaptation, Biological/genetics , Evolution, Molecular , Gene Expression Regulation, Fungal , Regulatory Sequences, Nucleic Acid , Saccharomyces cerevisiae/genetics , Genetic Fitness , Genetic Variation , Phenotype , Quantitative Trait Loci , Saccharomyces cerevisiae/pathogenicity , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL